

Advanced control systems for nitrogen removal in full-scale water facilities -International Water Association

WEDNESDAY 26TH JULY 2023

- This webinar will be recorded and made available "on-demand" on the <u>IWA</u> <u>Connect Plus</u> platform, with presentation slides, and other information.
- The **speakers** are responsible for **securing copyright permissions** for any work that they will present of which they are not the legal copyright holder.
- The opinions, hypothesis, conclusions or recommendations contained in the presentations and other materials are the sole responsibility of the speaker(s) and do not necessarily reflect IWA opinion.

WEBINAR INFORMATION

- 'Chat' box: please use this for general requests and for interactive activities.
- 'Q&A' box: please use this to send questions to the panelists.
 - (We will answer these during the discussions and in post-webinar materials.)

Please Note: Attendees' microphones are muted. We cannot respond to 'Raise Hand'.

AGENDA

Welcome Note – ICA SG

General Opening and Introduction

Advancing ABAC using predictive modelling

Full scale implementation of pH/ORP-based control

Process Control for Mainstream Anammox

Interactive panel discussion

Conclusion and closing

Speaker(s)

Janelcy Alferes

Pau Juan-Garcia and Ali Gagnon

Jeff Sparks

Victoria Ruano

Stephanie Klaus

All speakers, moderators and participants Pau Juan-Garcia and Ali Gagnon

MODERATORS & SPEAKERS

Jeff Sparks Process Engineer HRSD

Vicky Ruano Associate Professor Universitat de València

Stephanie Klaus Process Engineer HRSD

Dr. Janelcy Alferes IWA SG ICA (Chair)

Pau Juan-Garcia Senior Consultant Atkins (Moderator)

Alexandria Gagnon Process Engineer HRSD (Moderator)

ICA WELCOME NOTE IWA Instrumentation, Control and Automation (ICA) Specialist Group

DR. JANELCY ALFERES (CHAIR) & DR. YANCHEN LIU (VICE-CHAIR)

INTRODUCTION TO THE ICA SG

Objectives

- International discussion forum to collect, exchange methodologies & experience in all aspects of ICA for water systems
- Collect, summarize and publish practical experience to support and promote the use if ICA in practice
- Highlight socio-economic & sustainability aspects of ICA: management problems, operator aspects or incentive systems

INTRODUCTION TO THE ICA SG

Main activities

- Updating IWA Connect & social media with relevant information
- Group newsletters (available on the SG's IWA Connect page)
- Organizing and supporting conferences & workshops
- Supporting Task Groups, Working Groups & Clusters
- Organizing webinars
- Encouraging publications of ICA related papers at conferences and in scientific journals.
- Leveraging partnerships & relationships with industry organization with overlapping missions (e.g. the Smart Water Network Forum)

INTRODUCTION TO THE ICA SG

Main activities

ICA management comittee members

Belgium
Sweden
Chine
Spain
Germany
Australia
UK
USA

See More

Read

Newsletter

Content

Welcome to the ICA SG New projects, activities and issues Upcoming events PhD thesis News from IWA Publishing & IWAHQ Write to us

IWA – connect plus

Specialist Group Instrumentation Control and Automation Feeds Events Documents Members Meeting Mail/Newsletter Janelcy Alferes Castano Posted in Instrumentation Control and Automation 7 hours ago Advanced control systems for nitrogen Free removal in full-scale water facilities International Water Association Target Audience Practitioners, researchers, consultants, control software developers, wastewater 8 ICA Webinar on Advanced Control Systems for Nitrogen Removal Don't miss the opportunity to join our ICA webinar on Advanced Control Systems for Nitrogen Removal in full-scale applications, next July 26th. Have a look at the detailed information and register in the link !https://iwa-network.org/learn/nitrogen-removal/

All 522 Members

The ICA-SG provides the monitoring and control tools needed to meet current and future technology innovations for the water and wastewater industries. The methodologies are used to monitor and control unit processes, plant behaviour or lar... See More

April 2023 | NEWSLETTER2023

ICA SG: UPCOMING EVENTS

14th IWA Conference on Instrumentation, Control and Automation

• Oslo, Norway, 2025

Webinars

- Advanced biological nutrient removal control: developing novel strategies towards process optimization (2023)
- Series on N₂O measurement, control and mitigation (2023 2024)

Call for new MC members

Stay tuned and follow the group!

https://www.iwaconnectplus.org/dashboard

Instrumentation Control and Automation

PAU JUAN-GARCIA (SENIOR CONSULTANT ATKINS) & ALEXANDRIA GAGNON (PROCESS HRSD ENGINEER)

Activated Sludge Process

- Widely used biological treatment method in wastewater treatment plants to remove organic pollutants and nutrients from wastewater
- The process involves the growth of microorganisms (activated sludge) in aeration tanks where they consume and break down organic matter present in the wastewater
- As the microorganisms metabolize the organic pollutants, they form flocs that settle out as sludge in a secondary clarifier

Nitrification

- Nitrification is the biological conversion of ammonia (NH3) to nitrate (NO3-) through a two-step aerobic process
- Nitrifying bacteria oxidize ammonia to nitrite (NO2-) and then further to nitrate in the presence of oxygen
- To promote nitrification, aeration is essential to maintain sufficient dissolved oxygen levels in the aeration tank

Denitrification

- Denitrification is the biological conversion of nitrate (NO3-) to nitrogen gas (N2) under anoxic (low oxygen) conditions
- Denitrifying bacteria utilize the oxygen from nitrate molecules instead of dissolved oxygen, thereby converting nitrate to nitrogen gas which escapes into the atmosphere
- Aeration control is critical in denitrification to maintain a controlled low oxygen environment in specific parts of the treatment process, such as in anoxic zones or denitrification tanks

Aeration control

- Managing the dissolved oxygen levels within the aeration tank to create favorable conditions for both nitrification and denitrification processes
- This can be achieved by employing advanced process control strategies, such as dissolved oxygen probes and online monitoring systems
- Limiting aeration will also reduce energy consumption and improve bio-P performance and reduce the extent of effluent ammonia peaks

inspiring change

INTRODUCTION TO THE WEBINAR

Challenges

- High variability of incoming load and temperature
- Fixed reactor volumes
- WWTP design based on peak load
- Additional infrastructure, implementation, maintenance

Opportunities

- Make use of all available capacity
- Increases efficiency/robustness

Source: "Energy Conservation in Wastewater Treatment Facilities" – Manual of Practice – No. 32, Water Environment Federation – Copyright 2009

the international water association

Process requirements

- Sufficient provision of dissolved oxygen
- Ammonia as substrate (+ essential nutrients)
- Sufficiently long aerobic sludge retention time
- Sufficient mass of nitrifiers

This webinar

- Will explore the potential of different approaches for optimising nitrogen removal in activated sludge systems at full-scale.
- The benefits and limitations of using pH and ORP sensors, ion-selective ammonia sensors, or nitrate sensors within different control structures and reactor configurations will be discussed.
- Each presentation will focus on:
 - Potentials of integrating a digital twin and machine learning with industrial controllers for Ammonia-Based Aeration Control (ABAC).
 - Successful experiences of full-scale implementation of pH/ORP-based control for optimizing biological nitrogen.
 - Potentials of implementing a complementary ammonia vs. NOx (AvN) + partial denitration with anammox (PdNA) control scheme

Advancing Ammonia Based Aeration Control (ABAC) using Predictive Modelling

JEFF SPARKS, PETER A. VANROLLEGHEM, & CHARLES BOTT

OBJECTIVE

 To use a hybrid model feedforward approach to control the aerobic volume and DO setpoint, keep positive NHx at the end of the aeration tank, and stay below the max Total Inorganic Nitrogen (TIN) concentration of 5 mg/L in the secondary effluent.

EXISTING ABAC CONTROLLER

EXISTING ABAC CONTROLLER

UPGRADED ABAC CONTROLLER

HARDWARE/SOFTWARE

HYBRID MODEL OUTPUT

In the DCS:

$$DO_{SP} = \frac{K_{O,A}}{\left(X_{B,A} \cdot V \cdot S_{NH_{SP}} \cdot \mu_{A}\right)} - 1$$
$$\frac{Q\left(S_{NH_{0}} - \left(S_{NH_{SP}} - mech_{err}\right)\right)\left(S_{NH_{SP}} + K_{NH}\right)Y_{A}}{\left(S_{NH_{SP}} - mech_{err}\right)}$$

- Blue = measured/known
- **Green** = setpoint
- Yellow = determined via optimization
- Red = data-driven model output

- D. Vrečko, N. Hvala, and B. Carlsson, "Feedforward—feedback control of an activated sludge process: a simulation study," Water Science and Technology, vol. 47, no. 12, pp 19-26, 2003.
- DDMs: linear regression, triple exponential smoothing, XG Boost, LSTM neural network
- Others = from mechanistic model (Sumo)

KINETIC PARAMETER OPTIMIZATION (K_o, MU_A)

PERFORMANCE FOR DIFFERENT DATA-DRIVEN MODELS

PERFORMANCE FOR DIFFERENT DATA-DRIVEN MODELS

CONCLUSIONS

- Aeration tanks having a plug flow orientation (long and narrow) with relatively long detention times may have a Residence Time Distribution (RTD) that does not favor feedback-only ABAC.
- Nitrifier kinetics can be reasonably estimated, and similar results achieved using a random search space and Nelder-Mead optimization algorithm.
- Mechanistic model errors can be reasonably forecasted using univariate time series algorithms. The choice of algorithm may change depending on the desired level of complexity, forecasting accuracy, and composition of the test set data.

ACKNOWLEDGEMENT & DISCLAIMER

- Acknowledgment: This material is based upon work supported by the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy (EERE) under the Advanced Technology Office, Award Number DE-EE0009508.
- *Full Legal Disclaimer:* This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Full-scale implementation of pH/ORPbased control

VICKY RUANO, ASSISTANT PROFESSOR

Process Control for Mainstream Anammox

STEPHANIE KLAUS, HRSD

PdNA/PNA at HRSD

- PdNA pilot work:
 - A/B BNR pilot polishing MBBR (2012-2018)
 - York River filter pilot (2020-2021)
 - James River MBBR & IFAS (2020-present)
- PdNA full-scale status
 - York River filter 2018
 - James River IFAS 2022
 - Nansemond IFAS full plant design/construction 2024
 startup
 - James River MBBR in construction 2025 startup
 - Army Base IFAS feasibility study

Taking a DETOUR to achieve mainstream shortcut N removal – Partial Denitrification-Anammox (PdNA)

PNA = NOB Out-Selection Route

PdNA Route

• 80% in carbon

PDNA IMPLEMENTATION

Carbon Dosing Control

Feedforward – three approaches being evaluated at HRSD:

- 1. Controller adjusts for changes in influent flow only (already applied to AvN) Mike Parsons, James River (AvN)
- 2. Feedforward model predictive controller from regression analysis of calibrated process model simulations (no additional sensors) Ali Gagnon, VIP (ABAC now, soon to AvN)
- 3. Hybrid mechanistic and data/ML model with added NH4 sensor Jeff Sparks, Nansemond (ABAC soon to AvN)

FOUNDATION

NOB Outselection (PNA) is hard... PdNA is "easy"

Challenge:

The biggest challenge for polishing PdNA is operating AvN aeration control to consistently meet the required effluent targets out of the PdNA zone

AMX Stoichiometry

- NO2 rem/NH3 rem = 1.32
- NO3 prod/NH3 rem = 0.26
- NO3/NH3 Target = 1.06

TARGET AVN SETPOINT DEPENDS ON TIN LOADING, EFFLUENT GOALS, PDN%, AND INFLUENT NOX COMPOSITION

- Influent TIN is 8 mg/L
- Effluent NO3 is 1.5 mg/L
- All influent NOx is NO3

•Effluent NO3 is 1.5 mg/L

Effluent ammonia target is held at 1.0 mg/L

Composition of influent NOx varies to allow for PNA

IMPACT OF CARBON SOURCE AND COD/N ON THE CONCURRENT OPERATION OF PARTIAL DENITRIFICATION AND ANAMMOX

Practitioner points

•The authors aimed to investigate the impact of carbon sources and COD/NO3 -N ratio on partial denitrification selection.

•All the carbon sources supported partial denitrification as long as the nitrite sink was available.

•90% partial denitrification could be achieved with both acetate and glycerol in long-term operations.

•COD/NO3 -N ratio did not directly control partial denitrification but can be used to balance between denitrification rate and anammox

rate.

Le, T., Peng, B., Su, C., Massoudieh, A., Torrents, A., Al-Omari, A., ... Clippeleir, H. D. (n.d.). Nitrate residual as a key parameter to efficiently control partial denitrification coupling with anammox. *Water Environment Research*, *0*(0). <u>https://doi.org/10.1002/wer.1140</u>

FEEDBACK CARBON DOSING CONTROL

SUPPLEMENTAL CARBON CONTROL NO3-IN-CALCULATED/NOX-OUT-TRIM (NIC/NOT)

Direction of Flow

REQUIRES GOOD SENSORS!

- Good NH4 measurement, even at low concentrations
- Discrimination of NO3 and NO2 without interferences (depends how much NO2 is around)

HRSD'S ONLINE ANALYZER – "JARBALYZER" NH4, NO3, NO2, OP

YORK RIVER PROCESS CONTROL

12 DO probes 2 Jarbalyzers (3 Sample locations)

JAMES RIVER PROCESS CONTROL

DO (Insite)
NH3 (YSI ISE)
NOx (Hach Nitratax)
Jarbalyzer wet chemical

Process Control1. AvN aeration2. Feedback carbon dosing

Q&A DISCUSSIONS

MODERATOR: PAU JUAN & ALI GAGNON

UPCOMING IWA WEBINARS & EVENTS

Arthur Mynett - The Netherlands Elfithri Rahmah - France

Learn more about future online events at http://www.iwa-network.org/iwa-learn/

REGISTER NOW

www.iwa-network.org/webinars

13:00-14:30 BST

REGISTER NOW www.iwa-network.org/webinars

UPCOMING IWA WEBINARS & EVENTS

IWA Digital Water Summit BILBAO SPAIN

14-16 November 2023

The Latest in Digital Developments

www.digitalwatersummit.org

Find out more at:

https://digitalwatersummit.org/

UPCOMING IWA WEBINARS & EVENTS

Find out more at:

https://waterdevelopmentcongress.org/

JOIN OUR NETWORK OF WATER PROFESSIONALS!

IWA brings professionals from many disciplines together to accelerate the science, innovation and practice that can make a difference in addressing water challenges.

Use code WEB23RECRUIT

for a 20% discount off

new membership.

Join before 31 December 2023 at: www.iwa-network.org/join/

internati

er association

Learn more at

http://www.iwa-network.org/iwa-learn/

Instrumentation, Control and Automation - International Water Association (iwa-network.org)