

New Insights and Innovations for Advanced Water Treatment

01/02/2023

inspiring change

WEBINAR INFORMATION

- This webinar will be recorded and made available "on-demand" on the IWA website, with presentation slides, and other information.
- The speakers are responsible for securing copyright permissions for any work that they will present of which they are not the legal copyright holder.
- The opinions, hypothesis, conclusions or recommendations contained in the presentations and other materials are the sole responsibility of the speaker(s) and do not necessarily reflect IWA opinion.

the international water association

WEBINAR INFORMATION

- 'Chat' box: please use this for general requests and for interactive activities.
- 'Q&A' box: please use this to send questions to the panelists.
 (We will answer these during the discussions)

Please Note: Attendees' microphones are muted. We cannot respond to 'Raise Hand'.

IWA DESIGN, OPERATION AND MAINTENANCE OF DRINKING WATER TREATMENT PLANTS SG

Home Feeds Community Treasure Learn

Join the IWA SG on IWA Connect+

QQ

This SG aims to enhance networking and exchange of practices and experience on operational issues for those involved in the design and operation of drinking water treatment plants, and contribute to better understand the operational needs (ex. in terms of Training) and help solving operational problems.

www.iwaconnectplus.org/group/feeds?Comm unityKey=a0M4K0000027gbSUAQ

IWA WEBINAR:

New Insights and Innovations for Advanced Water Treatment

IWA "DESIGN, OPERATION AND MAINTENANCE OF DRINKING WATER TREATMENT PLANTS" Specialist Group

The core issues related to the drinking water treatment plants:

- Health risk related to emerging parameters (chemical and microbiological)
- NOM removal
- Advanced treatment processes for new micro-pollutants removal
- Application and case studies solving operational issues
- Smart tools for analyzing plant data

IWA WEBINAR:

New Insights and Innovations for Advanced Water Treatment

IWA "DESIGN, OPERATION AND MAINTENANCE OF DRINKING WATER TREATMENT PLANTS" Specialist Group

- **Prof. Jun Ma**, Harbin Institute of Technology, China (Committee Chair)
- Dr. Yeek Chia Ho, Universiti Teknologi PETRONAS, Malaysia (Committee Vice Chair)
- Prof. Qianhong She, Nanyang Technological University, Singapore
- Dr. Inês Breda, Silhorko-Eurowater A/S, Denmark
- Dr. Zdravka Do-quang, Suez Environment, France
- Jacob Kwasi Amengor, Ghana Water Company Limited, Ghana
- Rui Sancho, Water Safety Plan, Portugal

MODERATOR & SPEAKERS

Yumeng Zhao Harbin Institute of Technology, China (Moderator)

Xing Xie Georgia Institute of Technology, USA

Urs von Guten Eawah/EPFL, Switzerland

Rhea Verbeke Ku Leuven, Belgium

AGENDA

- Welcome, housekeeping rules, introduction
 Yumeng Zhao, Harbin Institute of Technology (moderator)
- Application of chemical oxidants for enhanced water treatment Urs Von Guten, Eawag/EPFL
- Locally enhanced electric field treatment (LEEFT) for drinking water disinfection Xing Xie, Georgia Institute of Technology
- Recent advances and scale up challenges in oxidants production by electrochemical processes for water disinfection
 Rhea Verbeke, KU Leavem
- Q&A Discussion
 Speakers & Moderator
- Final remarks and conclusion
 Yumeng Zhao, Harbin Institute of Technology

Application of chemical oxidants for enhanced water treatment

URS VON GUNTEN EAWAG, SWISS FEDERAL INSTITUTE OF AQUATIC SCIENCE AND TECHNOLOGY EPFL, ECOLE POLYTECHNIQUE FEDERALE, LAUSANNE

inspiring change

ENHANCED WATER TREATMENT

APPLICATION OF CHEMICAL OXIDANTS FOR MICROPOLLUTANT ABATMENT

- Initial success story!
- Application to drinking water
- Inorganic compounds (sulfide, nitrite, iron(II), manganese(II))
- Taste and odor compounds, color
- Organic contaminants:
 - Biologically active compounds are **abated** but what happens to them?
 - Application to wastewaters (enhanced wastewater treatment, water reuse): Role of matrix components?

SEARCH FOR A PERFECT OXIDANT: DECADES OF RESEARCH

von Gunten, ES&T, 2018

OXIDATION REACTIONS WITH MICRO-ORGANISMS/POLLUTANTS AND MATRIX COMPONENTS

PLATFORM FOR PREDICTION OF TRANSFORMATION PRODUCTS FORMATION DURING OZONATION

Lee et al., ESPI, 2017

LOSS OF PRIMARY BIOLOGICAL ACTIVITY CAUSED BY THE PARENT COMPOUND

OXIDATION OF SULFAMETHOXAZOLE BY OZONE AND 'OH

Huber et al., ES&T, 2003, Dodd et al., ES&T, 2006, Dodd et al. ES&T, 2009

TRANSFORMATION PRODUCTS OF BIOLOGICALLY ACTIVE/NON-ACTIVE MICROPOLLUTANTS

COMPOUNDS WITH HIGHER TOXICITY THAN THE PARENT COMPOUND

mutagenic/carconigenic

- Ozonation of drinking water
- DMS in low μ g/L levels \Rightarrow several 100 ng/L NDMA in drinking water
- Shutdown of ozonation
- Ban of tolylfluanide in most

European countries

NDMA FORMATION DURING OZONATION OF DMS

ROLE OF BROMIDE

 O_2

HOBr

 O_3

Br⁻

Br-DMS

von Gunten et al., ES&T, 2010

DMS

AN UNPREDICTABLE COCKTAIL

OZONATION-SAND FILTRATION OF LAKE WATER

BIODEGRADABILITY OF TRANSFORMATION PRODUCTS RELATIVE TO THE PARENT COMPOUNDS

TP measurement with LC-HRMS/MS (pos./neg. mode)

- 51 compounds spiked
- 187 TP: 143 (76%) stable, 35 (19%)
 abatement, 9 (5%) formation
- Abated structures contain: Aldehydes, carbonyls, carboxylic acids, alcohols, amides
- Formed from aromatic, olefinic, aliphatic functional groups
- 24 (13%) of TPs were better biodegradable than the parent compounds

51 compounds spiked, TPs from 39

Functional group

OXIDATION REACTIONS WITH MATRIX COMPONENTS

DISSOLVED ORGANIC MATTER (DOM)

- DOM is the main consumer of oxidants
- Phenolic moieties (1-2 mmol/gDOC): 10 µM for 5 mg/L DOC
- Sum of micropollutant concentrations (WW effluent):

20 μ g/L \approx 0.2 μ M (Bourgin et al. WR, 2018)

- Ozone: << 2% reaction with micropollutants</p>
- •OH: <<0.5% reaction with micropollutants
- Products of reactions of DOM with O₃ and ·OH have to be considered!
- Phenolic moieties are important precursors for DBPs

FORMATION OF CARBONYL COMPOUNDS DURING OZONATION OF A WASTEWATER

- Full-scale ozonation of wastewater effluent
- Carbonyl compounds formed from aromatic (EDC), olefinic, aliphatic functional groups
- Derivatization of samples to detect carbonyl compounds with *p*-toluenesulfonyl-hydrazine (TSH)
- 46 carbonyl formulas detected (data with clear formation trend)
- Formation proportional to ozone dose
- Degradation during biological sand filtration

Houska et al. Water Res. 2023, Manasfi et al. Water Res. 2023

inspiring change

OUTLOOK

- Development of predictive reaction tools for kinetics and product formation
- Combination of experimental studies with quantum chemical computations
- Coupling of prediction tools with *in silico* toxicity evaluation and biodegradation tools
- Better understanding of DOM by tailored chemical approaches (selective titrations, derivatization, tagging)
- Improved tools for interpretation of non-target MS data
- Use of stable isotopes to elucidate reaction mechanisms

Locally Enhanced Electric Field Treatment (LEEFT) for Drinking Water Disinfection

XING XIE, GEORGIA INSTITUTE OF TECHNOLOGY

inspiring change

ELECTRIC FIELD TREATMENT (EFT)

LOCALLY ENHANCED ELECTRIC FIELD TREATMENT (LEEFT)

Macro-scale enhancement 0 0

Micro-scale enhancement

- Combine Macro- & Micro-scale enhancement
- Tubular coaxial-electrode configuration
 - Two levels of electric field enhancement

- Water disinfection performance (*E. coli*)
 - 99.9999% inactivation with 1 V

---68 ---69 ---70 ---71 ----73 ---74 • 3 4 5 6 7 8 9 180 1 2 3 4 5 6 7 8 9 1

100

Effective against multiple strains of bacteria

Highly scalable (180 cm)

inspiring change

DEVELOPMENT OF LEEFT

Electrodes

Hand Powered

Power Source

OPERANDO INVESTIGATION OF LEEFT

OPERANDO INVESTIGATION OF LEEFT

T. Wang, et al. Nano Letters, 2022, 2: 860-867; T. Wang, et al. Nature Water, 2023, 1: 104-112.

OPERANDO INVESTIGATION OF LEEFT

T. Wang, et al. Nano Letters, 2022, 2: 860-867; T. Wang, et al. Nature Water, 2023, 1: 104–112.

NANOSECOND LEEFT

NANOSECOND LEEFT - PERFORMANCE

NANOSECOND LEEFT - MECHANISM

- Reversible electroporation a unique property of electroporation.
- Quick pore closure under 20 ns pulses at 12 kV/cm.

The ultrafast bacteria inactivation is induced by electroporation.

NANOSECOND LEEFT - MECHANISM

The bacteria oxidative stress is detected using DCFH-DA.

The ultrafast bacteria inactivation is not due to oxidation.

inactivation is achieved.

NANOSECOND LEEFT - MECHANISM

LEEFT with non-connected electrodes

1910				制的方案		19 Q I		i i dana												
000044		111	11	1	1 1 1	1 1	14	11	X											
GION	le folga						4.4			*										
010100	11																			
20190										1										
(ALLE)				L .																
ACCED	6.4			1																
Chocks						I				•										
2920		111		1	0028					1								1	<u>`</u> .	
OTHER D								E B B B B	認問										0.	Щ

TRANSFORMATIVE WATER DISINFECTION METHOD

- Demonstrated/Potential Advantages of LEEFT
 - High microbial inactivation efficiency
 - Broad-spectrum effective to all pathogens
 - Fast treatment process
 - Low capital, operational, and maintenance cost
 - No impact on the physical and chemical property of the treated water (i.e., neither generating DBPs nor releasing toxic metals nor increasing the corrosivity)
 - Operate on electricity without any chemical consumption
 - No overtreatment concerns
 - No secondary pollution in terms of odor, sound, or light
 - Easy to operate and possible for automatic operation
 - Completely **safe** to operators and nearby community

ACKNOWLEDGEMENTS

- Students
 - Ting Wang _
 - Cecilia Yu
 - Mourin Jarin
 - Feifei Liu
 - Feiyang Mo
- Alumni
 - Zeou Dou, PhD
 - Wensi Chen, PhD
 - Jianfeng Zhou, PhD
 - etc.
- Visiting scholars
- Collaborators
- Lab/Administration Support inspiring change

NWRI

BioLargo We Make Life Better

The Open Membrane Database (OMD): An open-access, user-sourced library of water purification and desalination membranes

RHEA VERBEKE, KU LEUVEN, BELGIUM

inspiring change

THE OPEN MEMBRANE DATABASE (OMD) FOR DESALINATION MEMBRANES

>1000 RO datapoints

www.OpenMembraneDatabase.org

SINCE AUGUST 2021

x 500 visitors / month

OMD ARTICLE IN THE JOURNAL OF MEMBRANE SCIENCE

The open membrane database: Synthesis–structure–performance relationships of reverse osmosis membranes

Cody L. Ritt^{a,1}, Timothée Stassin^{b,1}, Douglas M. Davenport^b, Ryan M. DuChanois^a, Ines Nulens^b, Zhe Yang^c, Adi Ben-Zvi^d, Naama Segev-Mark^d, Menachem Elimelech^a, Chuyang Y. Tang^c, Guy Z. Ramon^d, Ivo F.J. Vankelecom^b, Rhea Verbeke^{b,*}

^a Department of Chemical and Environmental Engineering, Yale University, New Haven, CT, 06520-8286, USA

^b Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS), KU Leuven, Celestijnenlaan 200F Box 2454, 3001, Leuven, Belgium

^c Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, SAR, PR China

^d Department of Civil and Environmental Engineering, Technion—Israel Institute of Technology, Haifa, 3200003, Israel

doi: 10.1016/j.memsci.2021.119927 Journal of Membrane Science, 641, 119927.

TOPICS COVERED

- Water scarcity and state-of-the art membrane desalination
- Why is a database useful?
- OMD founding principles
- OMD data and constraints
- Online tools: membrane submission & calculators
- Where are we and where do we go ?

WATER SCARCITY OCCURS WHEN DEMAND EXCEEDS AVAILABILITY

COMBINED SOLUTIONS NEEDED TO FIGHT WATER SCARCITY

Desalination

DESALINATION MEMBRANES CAN HELP INCREASE FRESH WATER AVAILABILITY

fresh water

WE ALSO NEED A DATABASE TO INCREASE RESOURCE AND TIME EFFICIENCY

Data scattered

Data not readable

Data not standardized

WHY WOULD A DATABASE IMPROVE THE FIELD? Understand Standardize Share

Inspiration:

- Cambridge Structural Database (since 1965): MOF explorer
- Protein Data Bank (since 1971)

the international water association

THE FOUNDATIONAL PRINCIPLES OF THE OMD

Data Features	Status Quo	OMD
Update Frequency		
Data Sourcing		
Processing		
Exploration		
Accessibility		

OMD CAN HELP ADVANCE MEMBRANE TECHNOLOGY

- Benchmark novel RO membranes against the state of the art
- 2 Conduct meta-analysis
- 3 Develop membrane synthesis-structure-performance relationships
 - Calculate membrane performance, concentration polarization, osmotic pressure
 - Facilitate interdisciplinary research

1

4

- Definition of RO membrane: R_{NaCl}> 80%
- Not only the best performing \rightarrow data series

INPUT COLLECTED BY THE OMD

Asymmetric

Thin-film nanocomposite (TFN)

Inorganic

FUNCTIONALITY OF THE OMD

Q Export csv T Columns Reference Report Membrane Author Year B (L m⁻² h⁻¹) Author Year Reference A (L m⁻² h⁻¹ bar⁻¹) A/B (bar⁻¹) R___ (%) Chemistry Title A (L m⁻² h⁻¹ bar⁻¹) 2005 10.1016/i.memsci.2006.02.041 7.15 7.90 98.63 Polyamide R_{obs} (%) Louie \checkmark R. (%) Structure Chemistry Name

• Filtering

- Interactive chart
- Data callouts
- Tabulated details
- Data export as csv
- Figure export as png

2

4

SUBMISSIONS OPEN TO EVERYONE

- 1 Enter report and data
 - Provide contact info

Contact information and additional details									
First name		Last name *							
Verbeke		Rhea							
University / company / other *		E-mail *							
KU Leuven		rhea.verbeke@kuleuven.be							

Post-submission	review	bv	OMD	team

5 Upon acceptance: data directly online

Membrane information	
Membrane name * Write a unique name for the membrane that it can be identified in your reference document.	Ū
	1
Chemistry *	
Selective layer chemistry	
Select or search	~
Modifications *	Ū
Membrane modifications	
Select or search	~
Structure *	
Membrane Structure	
Select or search	V

ONLINE CALCULATORS TO HELP USERS

Membrane Performance Calculator Concentration Polarization Calculator <u>Osmotic Pressure</u> <u>Calculator</u>

<u>Common Unit</u> <u>Converters</u>

- Facilitate accurate determination to avoid errors
- Step-by-step process

Membrane Performance Calculator

Step 1. Water permeability coefficient, $oldsymbol{A}$	

 $J_{\mathrm{W}}, \mathrm{pure} = A \Delta P$

 i.
 Measure pure water flux (no solutes present), J_W , pure =

 Enter value
 Image: margin margin

WHERE DO WE STAND NOW?

Very positive feedback, many visitors, highly cited paper

- Only 1 external submission since August 2021
- Involvement of the field needed
 - You and your colleagues !
 - − Journals \rightarrow open repository \rightarrow OMD
 - Other ideas?

- Revisit concentration polarization assumptions
- Membranes tested under standard conditions \rightarrow gold standard
- Addition of trace organic contaminants
- Include dynamic upper bound
- Establish connections with journals to facilitate automatic data transfer

LONG TERM VISION: OMD AS A DATABASE 'HUB'

COLLABORATIVE PROJECT TO ADVANCE OUR FIELD

Submit your membrane data

More data = higher chance of a scientific breakthrough

THANK YOU TO ALL INVOLVED PARTIES

大學教育資助委員會 University Grants Committee

MEMBRANE SOCIETY of australasia

Please spread the word & get involved!

Dr. Rhea Verbeke

rhea.verbeke@kuleuven.be info@openmembranedatabase.org

. codefathers

UPCOMING WEBINARS

8 FEBRUARY 2023

REGISTER NOW www.iwa-network.org/webinars In partnership with:

JOIN OUR NETWORK OF WATER PROFESSIONALS!

IWA brings professionals from many disciplines together to accelerate the science, innovation and practice that can make a difference in addressing water challenges.

Use code WEB23RECRUIT

for a 20% discount off

new membership.

Join before 31 December 2023 at:

www.iwa-connect.org

inspiring change

Learn more at

http://www.iwa-network.org/iwa-learn/