

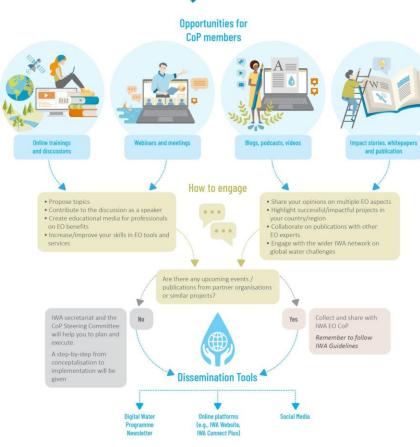
AGENDA

- Welcome & icebreaker (5 mins)
 Erin Jordan, IWA
- Presentations (45 mins)
 Karin Schenk, EOMAP
 - Using SAR for Smarter Water Planning and Disaster Risk Reduction Brian Eyler, Stimson/Mekong Dam Monitor
 - Flood And Drought Forecasting And Warning Systems Of The Mekong River Commission Based On Satellite Data Sothea Khem, Mekong River Commission Secretariat
 - Potential and Uptake of Earth Observation for Inland Water Quality Monitoring and Reporting Ils Reusen, VITO/ WaterForCE Water Quality Continuum
 - Leveraging a range of Earth observing satellites for aquatic applications Megan Coffer, NOAA/GST
- Q&A Panel Discussion (30 mins)
 Karin Schenk, EOMAP
- SeBS Project Presentation (5 mins)
 Geoff Sawyer, EARSC
- Wrap Up and Close (5 mins)
 Karin Schenk, EOMAP & Erin Jordan, IWA

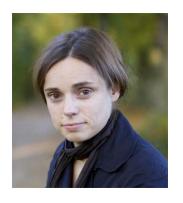
EO4WAT COMMUNITY OF PRACTICE

The CoP aims to:

- Provide a platform to share approaches on the application of EO technologies for water management for different endusers.
- Enable linkages between cross-cutting scientific communities and end-users to attain a better understanding of how EO technology can be best used, and what are needs of end-users
- Identify gaps and how these can be addressed in the understanding and use of EO technology in managing water.


Engage with the IWA Community of Practice Earth Observation for Water Quality Management

The IWA Earth Observation for Water Management Community of Practice (CoP) brings together experts from different sectors of the water industry interested in the use of Earth observation technologies for improved water quality and quantity management.

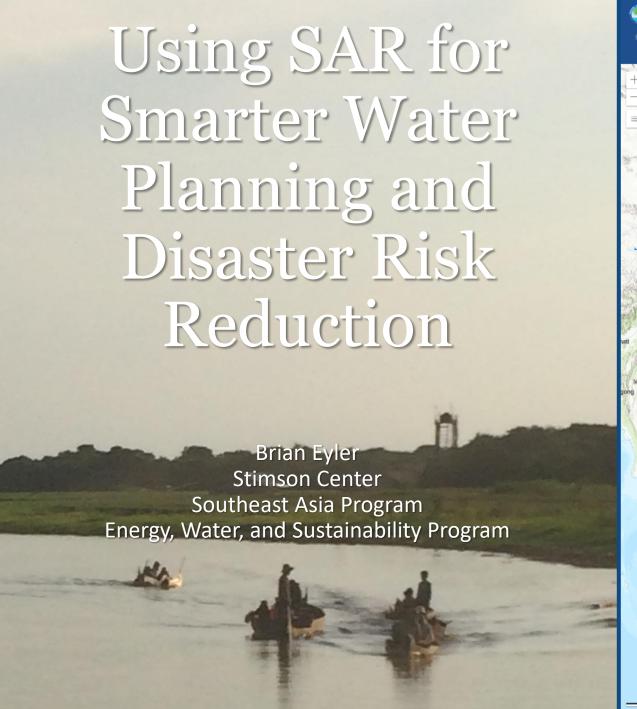

As a member of the CoP, you have access to numerous capacity building and collaboration opportunities. This infographic shows you in a snapshot all the avenues for you to get involved in the Cop, get recognised as an EO expert and expand your network!

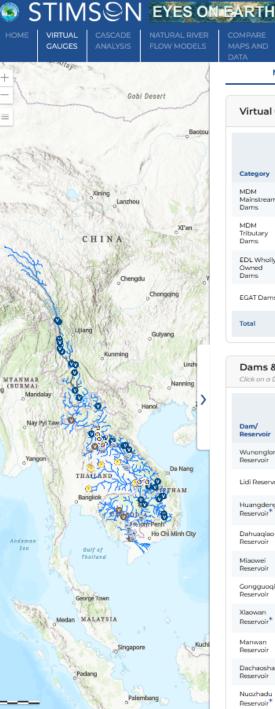
www.iwa-network.org

MODERATOR & PANELLISTS

Karin Schenk
Head of Water Quality
Department, EOMAP,
Germany

Brian Eyler
Senior Fellow and
Director Energy,
Water, and
Sustainability, The
Stimson Center, USA


Sothea Khem
River Flood
Forecasting Specialist
at Mekong River
Commission
Secretariat, Cambodia



Ils Reusen
Project Manager at
VITO Remote
Sensing, Belgium

Megan Coffer NOAA/Global Science & Technology, Inc., USA

Mekong Dam Monitor

English

Virtual Gauges Summary

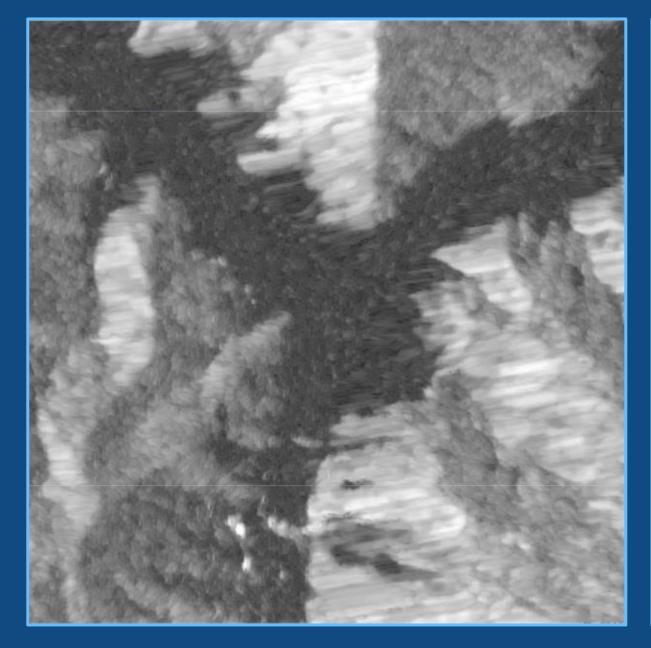
Menu

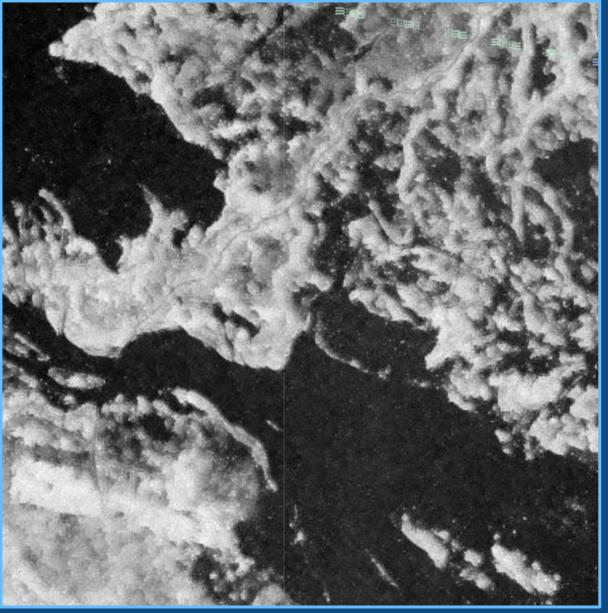
Category	# of Dams	Est. Current Active Storage	Est. Total Active Storage	Est. Current Active Storage %	Increase/ Decrease	Flow Change From Last Week	Volume Change From Last Week
MDM Mainstream Dams	13	14.110 krm³	24.803 km³	56.9%	•	-190.34 cumecs	0.115 km ³
MDM Tributary Dams	15	5.202 km³	13.085 km ³	39.8%	•	-205.73 cumecs	0.124 km ³
EDL Wholly- Owned Dams	10	4.634 km³	5.444 km³	85.1%	•	-352.67 cumecs	0.213 km ³
EGAT Dams	7	2.334 km³	3.299 km ³	70.7%	•	-995.21 cumecs	0.601 km ³
Total	45	26.280 km ³	46.631 km ³	56.4%	•	-1743.96 cumecs	1.053 km ³

Dams & Reservoirs

Click on a Dam/Reservoir name to access a dam profile, operation curve, and satellite imager

Dam/ Reservoir	Location	Est. Current Active Storage	Est. Total Active Storage	Est. Current Active Storage %	Increase/ Decrease	Flow Change From Last Week	Level Change From Last Week	Vol Ch Fi L W
Wunonglong Reservoir	*)	0.036 km ³	0.106 km³	33.4%		0.00 cumecs	0.00 m	0. k
Lidi Reservoir	*0	0.016 km³	0.024 km³	65.4%		0.00 cumecs	0.00 m	0. k
Huangdeng Reservoir*	*)	0.036 km ³	0.792 km³	4.6%		0.00 cumecs	0.00 m	O. k
Dahuaqiao Reservoir	*>	0.121 km³	0.103 km³	100.0%		0.00 cumecs	0.00 m	0. k
Miaowei Reservoir	*>	0.000 km³	0.177 km³	0.0%		0.00 cumecs	0.00 m	O. k
Gongguoqiao Reservoir	*)	0.095 km³	0.179 km³	53.2%		0.00 cumecs	0.00 m	0. k
Xiaowan Reservoir*	*>	4.760 km ³	11.178 km³	42.6%	ŵ	-125.49 cumecs	0.53 m	O.
Manwan Reservoir	*>	0.058 km³	0.088 km³	66.0%		0.00 cumecs	0.00 m	0. k
Dachaoshan Reservoir	*)	0.024 km³	0.124 km³	19.1%		0.00 cumecs	0.00 m	O. k
Nuozhadu Reservoir*	*0	8.380 km ³	11.193 km³	74.9%		0.00 cumecs	0.00 m	O. k

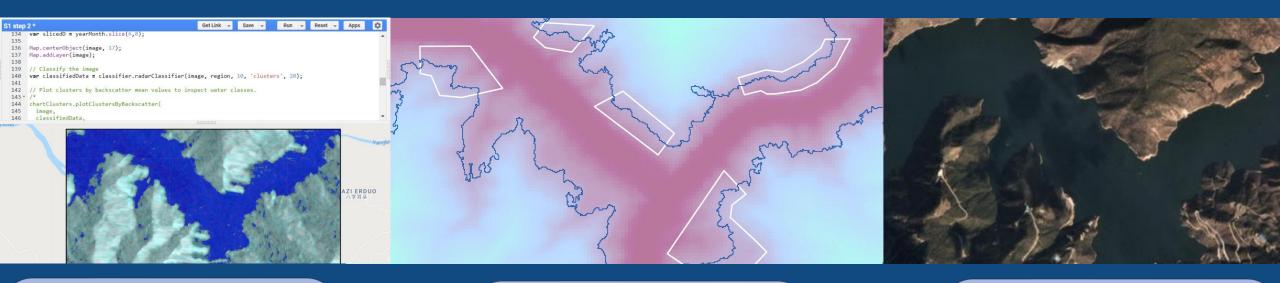



2022-2023 Mekong Dam Monitor Highlights

- Confirmed use cases by MRC, govts & NGOs in Vietnam, Cambodia, Thailand, Laos
- 50 Early Warning Alerts issued
- ~35 million social media accounts in 7 languages

Mekong Dam Monitor

Sharing Data, Empowering People.



Xiaowan Dam

Tonle Sap Lake bottleneck

What is a Virtual Gauge?

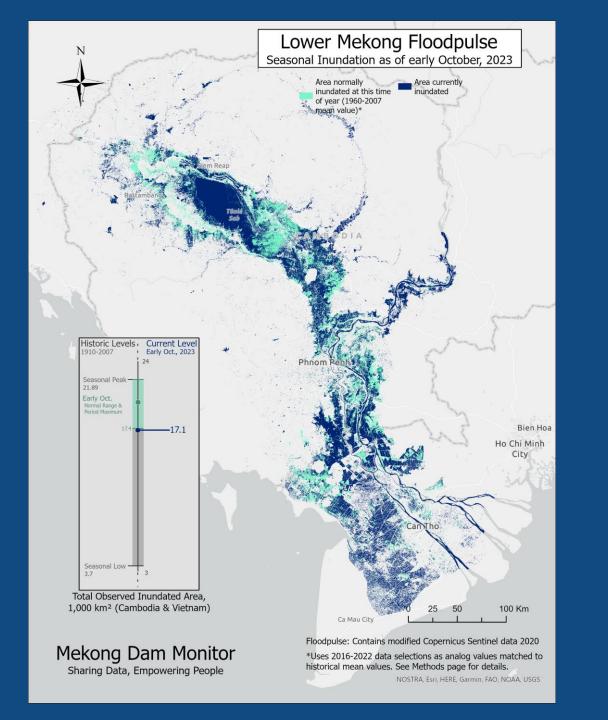
Identify level shape of reservoir

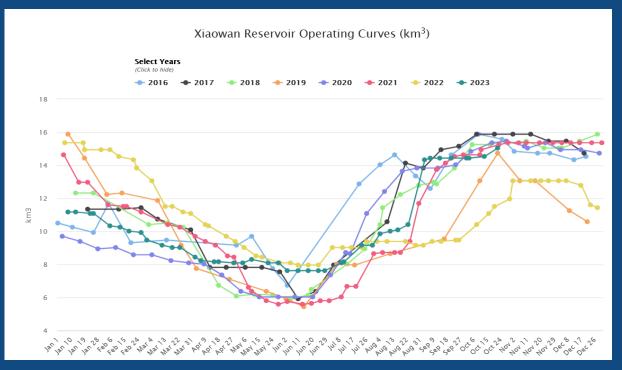
- 1. Import Sentinel 1-2 imagery (10 meter resolution) via Google Earth Engine
- 2. Process image to identify water
- Filter
- Cluster
- Modify code
- 3. Export to ArcGIS

*Sentinel 1 imagery preferred because it can see through clouds.

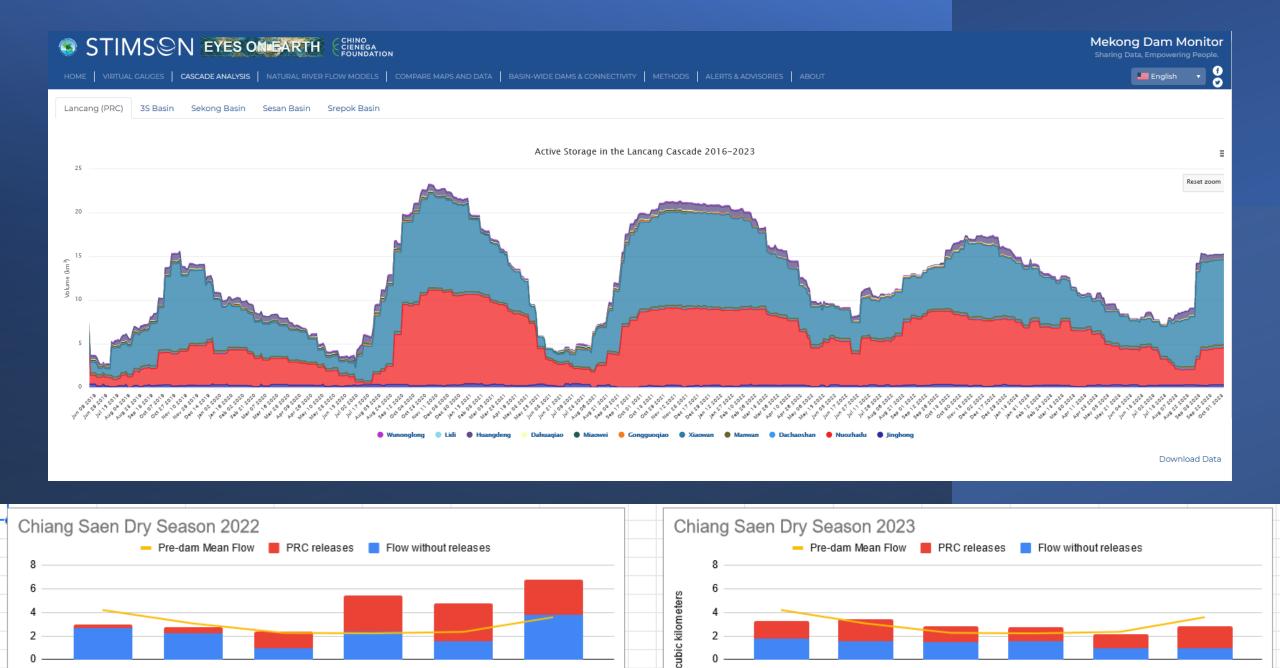
Determine raw altimetry data (masl)

- 1. Remove extraneous shapes from reservoir shape
- 2. Generate a line circumference of shape
- 3. Select reliable areas of shoreline (white boxes above)
- 4. Generate mean shoreline elevation using 30-meter ALOS digital elevation model (remove outliers with filters)


Error: +/- 2.5 meters



Check altimetry data vs satellite images


- 1. Outlier check (is raw data outside known range of maximum and minimum)
- 2. Fluctuation check (if raw data shows major fluctuation, does image also show this?)
- 3. Adjust identified outliers & erroneous fluctuations using proxy known data

Error: +/-1 meter

December

January

February

March

April

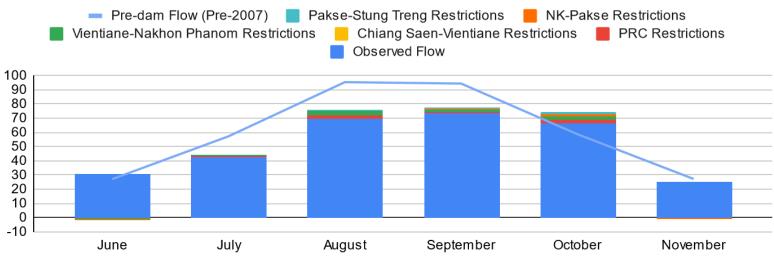
May

May

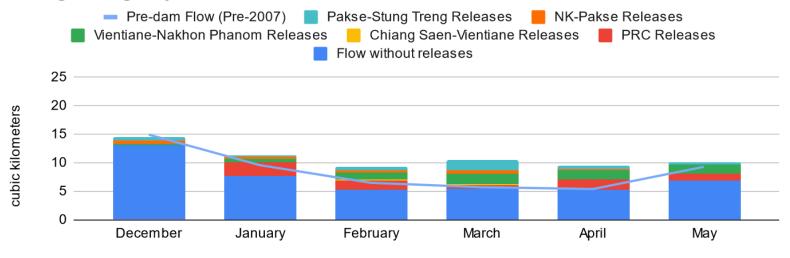
April

December

January


February

March



Chengdu Chongging Lijiang Guiyang Kunming Linzhou Nanning Mandalay Chiang Saen Vientiane Nakhon Phanom Yangon Da Nang Ho Chi Minh City Gulf of Thailand

Stung Treng Wet Season 2022

Stung Treng Dry Season 2023

Cascading hazards disaster at Melamchi, Nepal (June 15, 2021)

Thank you!

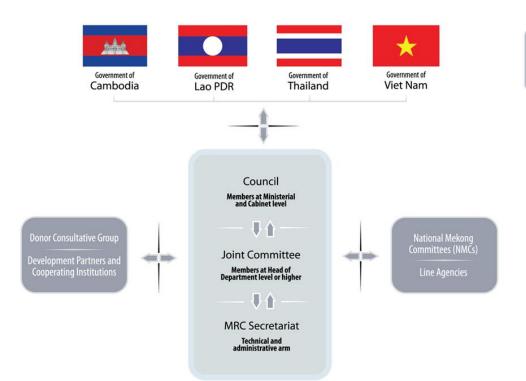
beyler@stimson.org

Twitter: @aikunming

Brian Eyler
Southeast Asia Program Director
Energy, Water, Sustainability Program Director
Stimson Center

FLOOD AND DROUGHT FORECASTING AND WARNING SYSTEMS OF the MEKONG RIVER COMMISSION BASED ON SATELLITE DATA

DR. KHEM SOTHEA, RFDMC/MRCS
25 OCTOBER 2023



1. Background about MRC

A

the international water association

Mekong River Commission Governance Structure

Our Dialogue Partners

Office of CEO

Administration Division

- Administration, incl. governance meeting
- Finance & Procurement
- Human Resources

Planning Division

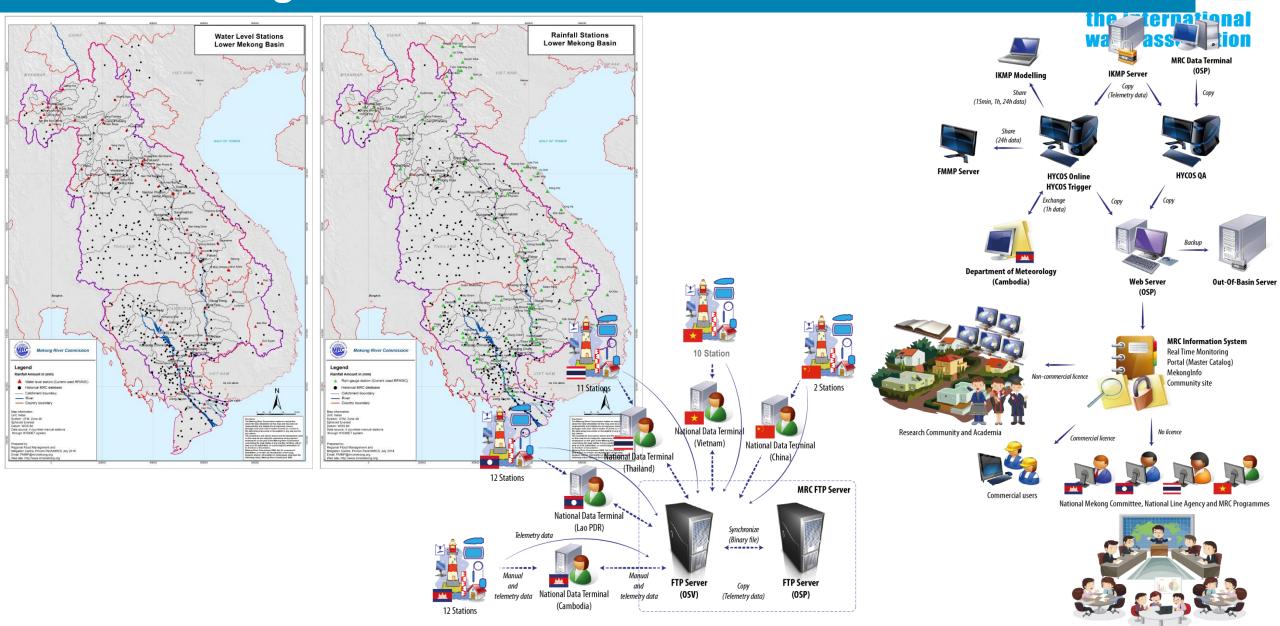
- Basin-Wide assessment, incl. socio-economic
- Basin & Sector Planning, incl. hydropower, irrigation, climate change
- MRC Procedures coordination
- IWRM Project
- Navigation support

Environmental Management Division

- Environmental assessment
- Environmental planning & management, incl. wetland, watershed, fisheries
- Environmental Monitoring, incl. water quality & EHM
- State of basin reporting

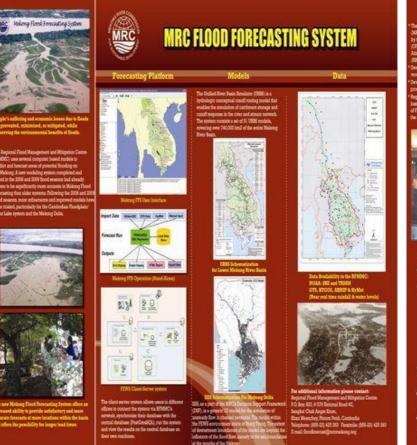
Technical Support Division

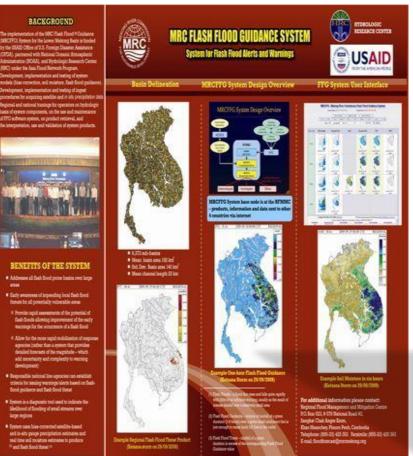
- Water & climate monitoring, incl. sediment
- Databases & Information System
- Modeling & Tools
- Flood & Drought Forecasting & Early Warning

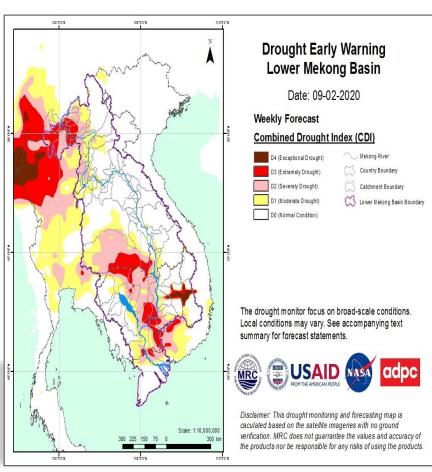


MRCS building in Vientiane, Lao PDR

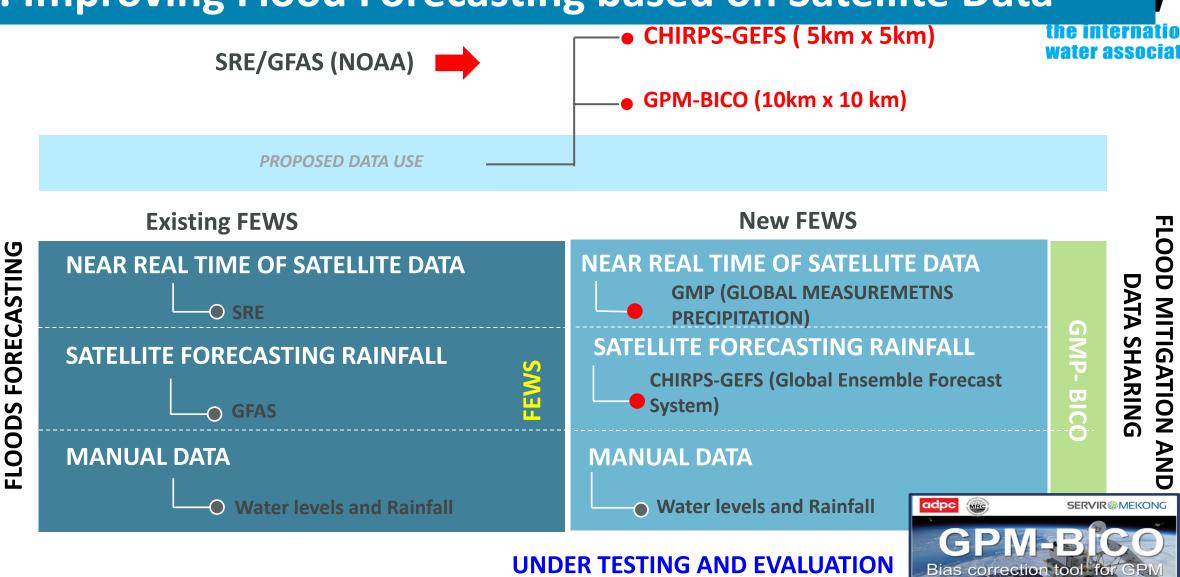
Regional Flood and Drought Management Centre in Phnom Penh, Cambodia


2. Data sharing information within the LMB via MRCS



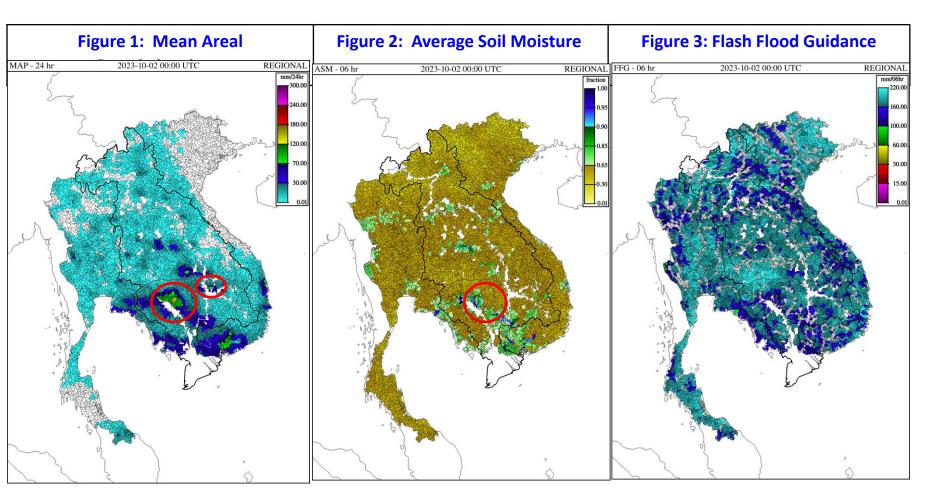

3. The MRC's Regional Flood & Drought Management Center

- 1. Daily (once/twice) flood forecasting & warning during flood season, Weekly monitoring WL in dry season, for Mekong mainstream.
- 2. Flash Flood Guidance (1-3-6-24 hourly updates) & Flash Flood Alerts during critical weather situations.


- the international water association
- 3. Drought forecasting & monitoring (3 months, updated monthly/2-month depend on NASA' data)

4. Improving Flood Forecasting based on Satellite Data

A. Riverine flood forecasting



Forecasting Station	24h Observe d Rainfall (mm)	Zero gauge above M.S.L (m)	Alarm Level (m)	Flood Level (m)		ed W. level ero gauge(m)	Forecasted Water Levels (m)				Forecast ed Water Levels change in 5 days (m)	Max Water Levels change within next 5 days (m)	Min distance to alarm level within next 5 days (m)	to flood level within next 5	
	1 Oct				1 Oct	2 Oct	3 Oct	4 Oct	5 Oct	6 Oct	7 Oct				
Jinghong	0.5	-	-	-	536.38	536.08	-	-	-	-	-	-	-	-	-
Chiang Saen	16.0	357.110	11.50	12.80	3.96	→ 3.94	→ 3.87	↓ 3.75	→ 3.80	→ 3.89	↑ 4.01	0.07	0.07	7.49	8.79
Luang Prabang	4.4	267.195	17.50	18.00	10.80	→ 10.82	→ 10.87	→ 10.85	→ 10.77	→ 10.84	→ 10.94	0.12	0.12	6.56	7.06
Chiang Khan	0.6	194.118	14.50	16.00	9.06	↑ 9.25	→ 9.30	→ 9.35	→ 9.36	→ 9.30	→ 9.35	0.10	0.11	5.14	6.64
Vientiane	0.0	158.040	11.50	12.50	7.32	→ 7.39	↑ 7.61	→ 7.69	→ 7.77	→ 7.80	→ 7.74	0.35	0.41	3.70	4.70
Nong Khai	0.0	153.648	11.40	12.20	7.00	→ 7.05	↑ 7.25	→ 7.31	→ 7.36	→ 7.39	→ 7.35	0.30	0.34	4.01	4.81
Paksane	8.2	142.125	13.50	14.50	8.51	→ 8.58	→ 8.63	↑ 8.75	→ 8.78	→ 8.81	→ 8.83	0.25	0.25	4.67	5.67
Nakhon Phanom	0.0	130.961	11.50	12.00	8.10	↓ 7.90	↓ 7.75	→ 7.72	→ 7.80	→ 7.84	→ 7.87	-0.03	-0.03	3.63	4.13
Thakhek	0.0	129.629	13.00	14.00	9.13	↓ 8.95	↓ 8.81	→ 8.77	→ 8.86	→ 8.90	→ 8.94	-0.01	-0.01	4.06	5.06
Mukdahan	0.0	124.219	12.00	12.50	8.34	↓ 8.15	↓ 7.95	↓ 7.80	→ 7.75	→ 7.83	→ 7.87	-0.28	-0.20	4.05	4.55
Savannakhet	0.0	125.410	12.00	13.00	6.78	↓ 6.50	↓ 6.25	↓ 6.08	→ 6.03	→ 6.08	→ 6.11	-0.39	-0.25	5.75	6.75
Khong Chiam	7.0	89.030	13.50	14.50	10.87	↓ 10.81	↓ 10.57	↓ 10.32	↓ 10.12	↓ 10.05	→ 10.10	-0.71	-0.24	2.93	3.93
Pakse	5.2	86.490	11.00	12.00	8.90	→ 8.90	↓ 8.70	↓ 8.55	↓ 8.42	→ 8.38	→ 8.41	-0.49	-0.20	2.30	3.30
Stung Treng	20.0	36.790	10.70	12.00	8.09	↑ 8.18	→ 8.21	↓ 8.04	↓ 7.92	↓ 7.80	→ 7.77	-0.41	0.03	2.49	3.79
Kratie	18.8	-0.101	22.00	23.00	18.85	→ 18.83	18.90	↑ 18.93	↓ 18.74	↓ 18.60	↓ 18.46	-0.37	0.10	3.07	4.07
Kompong Cham	2.2	-0.930	15.20	16.20	12.40	12.46	→ 12.48	12.52	→ 12.50	↓ 12.36	↓ 12.24	-0.22	0.06	2.68	3.68
Phnom Penh (Bassac)	1.4	-1.020	10.50	12.00	7.95	↑ 8.02	↑ 8.06	→ 8.08	→ 8.07	↓ 8.00	↓ 7.95	-0.07	0.06	2.42	3.92
Phnom Penh Port	-	0.070	9.50	11.00	6.67	→ 6.69	→ 6.72	→ 6.74	→ 6.74	↓ 6.70	↓ 6.67	-0.02	0.05	2.76	4.26
Koh Khel (Bassac)	32.6	-1.000	7.90	8.40	6.98	↑ 7.02	↑ 7.05	→ 7.07	→ 7.08	↓ 7.05	↓ 7.02	0.00	0.06	0.82	1.32
Meak Luong	nr	-0.330	7.50	8.00	5.72	↑ 5.80	↑ 5.83	→ 5.85	→ 5.87	→ 5.85	↓ 5.80	0.00	0.07	1.63	2.13
Prek Kdam	7.2	0.080	9.50	10.00	6.97	↑ 7.05	↑ 7.12	↑ 7.15	→ 7.17	→ 7.16	↓ 7.13	0.08	0.12	2.33	2.83
★ Tan Chau	46.6	0.000	3.50	4.50	2.80	↓ 2.75	↓ 2.70	→ 2.68	→ 2.66	→ 2.69	→ 2.71	-0.04	-0.04	0.79	1.79
★ Chau Doc	12.0	0.000	3.00	4.00	2.55	↓ 2.47	↓ 2.40	→ 2.38	→ 2.36	1 2.40	↑ 2.44	-0.03	-0.03	0.56	1.56

B. Flash flood guidance system (FFGS)

- Very heavy rain
 occurred in Kompong
 Kdei area of
 Cambodia in the past
 24 hours.
- Soil moisture in some areas in Siem Riep province were nearly saturated state
- In the next 6 hours, the flash flood will likely be detected in some areas of Siem Riep.

C. Drought Forecasting

the international water association

Provides 3-month forecast (updated weekly).

Main indicators:

- Meteorological drought indices
- Rainfall anomalies
- Standardize Precipitation Index (SPI)
- Moisture Availability Index
- Dry Spells, Drought Condition, RD
- Hydrological drought indices
- Stream flow
- Water level
- Standardized Runoff Index (SRI)
- Groundwater level
- Reservoir storage
- ❖ Agricultural drought indices
- Normalized Difference Vegetation Index
- Normalized Difference Water Index
- Soil Moisture Anomalies
- Soil Moisture Deficit Index (SMDI)
- Temperature Anomalies
- Evapotranspiration deficit

Note: Those highlighted in red are the used indices by MRC

Drought Early Warning Lower Mekong Basin

Date: 09-02-2020

Weekly Forecast

D0 (Normal Condition)

Combined Drought Index (CDI)

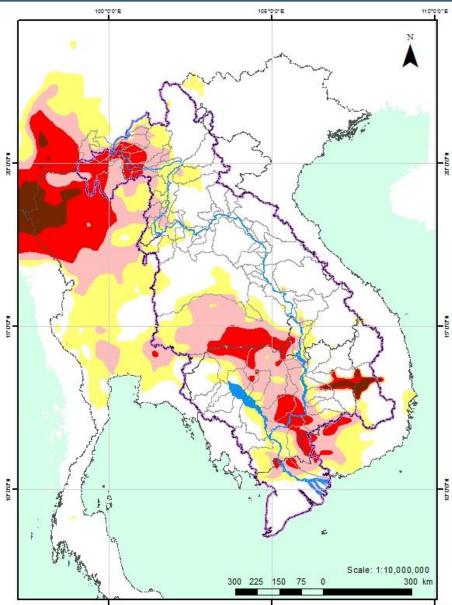
Mekong River

Country Boundary

Catchment Boundary

Lower Mekong Basin Boundary

The drought monitor focus on broad-scale conditions. Local conditions may vary. See accompanying text summary for forecast statements.



Disclaimer: This drought monitoring and forecasting map is caculated based on the satellite imageries with no ground verification. MRC does not guarrantee the values and accuracy of the products nor be responsible for any risks of using the products.

5. Actual Plan for Flood Season 2023

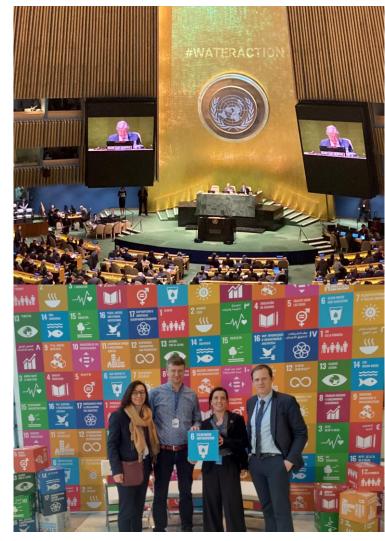
- Improving quality of both hydro-meteorological (water level & rainfall) data as inputs for models based on QA/QC.
- Applying GPM-BICO application (cooperating with ADPC...) for improving riverine flood forecasting, FFGS and Drought prediction.
- Updating Rating-Curves for all key-stations to improve flood forecasting outputs.
- > Input dam/reservoir operations information for FEWS, if data is available.
- Provide capacity building on flood forecasting for National Levels.
- > Integrating medium and long-ranges forecasting of the floods and drought on webpage.
- Addressing the needs in a more effective and efficient manner in proper cooperating with MCs and other technical partners (ADPC, DHI, eWater.....)

One Mekong. One Spirit.

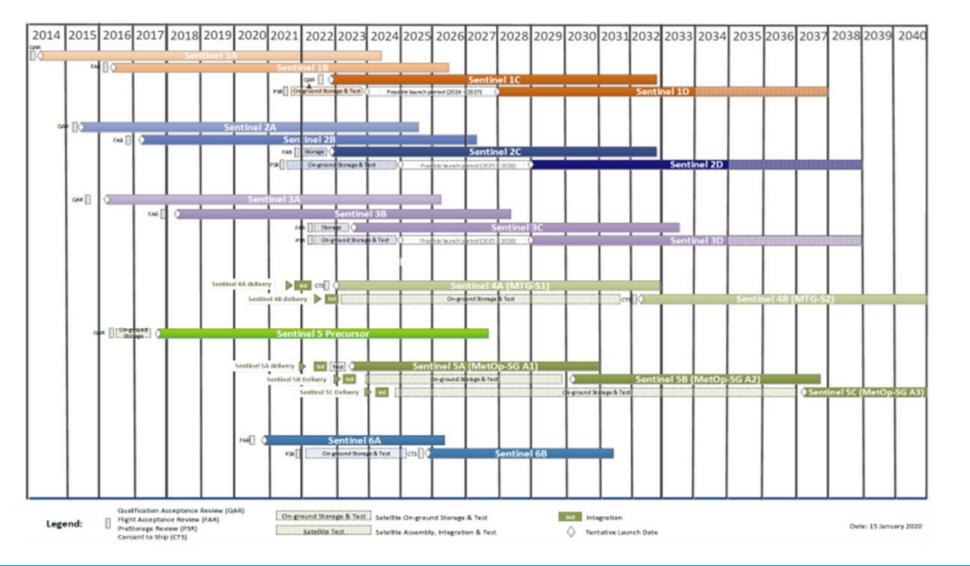
S'AMABLE DEVELOR

POTENTIAL AND UPTAKE OF EARTH OBSERVATION FOR INLAND WATER QUALITY MONITORING AND REPORTING

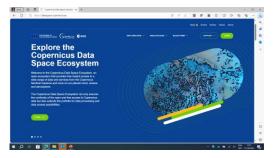
ILS REUSEN (VITO; ILS.REUSEN@VITO.BE), STEFAN SIMIS (PML), STEEF PETERS (WI), ANNELIES HOMMERSOM (WI), CLAUDIA GIARDINO (CNR), GARY FREE (JRC) + CO-AUTHORS WHITE PAPER

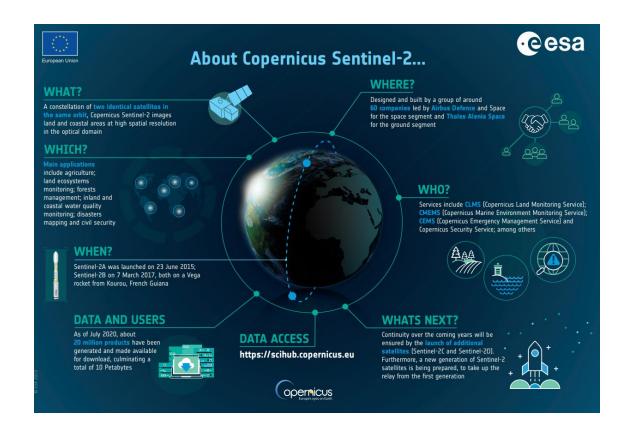

UN WATER 2023 CONFERENCE, NY

Concept Paper Interactive dialogue 3: Water for climate, resilience and environment – source to sea, biodiversity, climate, resilience and disaster risk reduction


"The power of Earth observation. Accelerating digital transformation, through remote sensing and satellite imagery data, holds great potential for transforming how data and information are generated and accessed and used for monitoring and reporting on water bodies.

Earth observation increasingly enables innovative water and decision information systems across scales. This will offer more opportunities for neutral, reliable and transparent data and information-gathering and sharing, essential for ensuring sustainable water management and to close data and information gaps. Field observation, however, will remain essential to "ground-truth" Earth observation data"


THE EUROPEAN SATELLITE OBSERVATION INFRASTRUCTURE IS FULLY OPERATIONAL (OPEN AND FREE)



- Swath width: 290 km
- Revisit time: 5 days with two satellites (Sentinel-2A and B)
- 13 spectral bands in VNIR and SWIR wavelength region
- Spatial resolution dependent on the spectral band

10 metre spatial resolution:

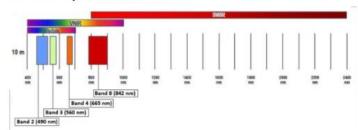


Figure 1: SENTINEL-2 10 m spatial resolution bands: B2 (490 nm), B3 (560 nm), B4 (665 nm) and B8 (842 nm)

20 metre spatial resolution:

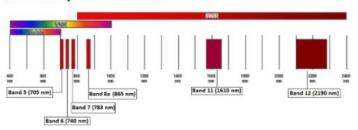


Figure 2: SENTINEL-2 20 m spatial resolution bands: B5 (705 nm), B6 (740 nm), B7 (783 nm), B8a (865 nm), B11 (1610 nm) and B12 (2190 nm)

60 metre spatial resolution:

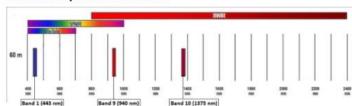
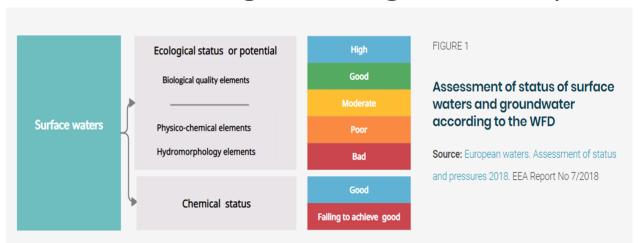


Figure 3: SENTINEL-2 60 m spatial resolution bands: B1 (443 nm), B9 (940 nm) and B10 (1375 nm)

COMPLEMENTARITY

There is complementary value in **optical water quality observations from satellite sensors** and this is relevant to the goals of the **EU Water Framework Directive** (WFD) wrt surface waters to achieve good ecological status by 2027


2022/0344 (COD)

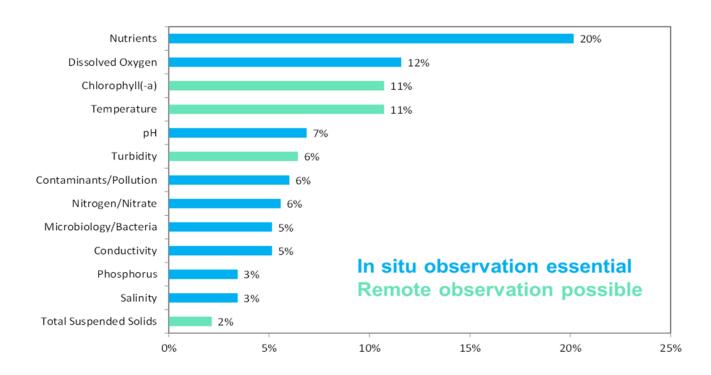
Proposal for a

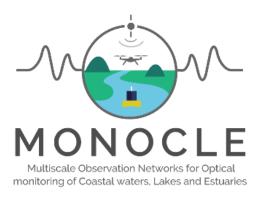
DIRECTIVE OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL

amending Directive 2000/60/EC establishing a framework for Community action in the field of water policy, Directive 2006/118/EC on the protection of groundwater against pollution and deterioration and Directive 2008/105/EC on environmental quality standards in the field of water policy

(31) It is necessary to take into account scientific and technical progress in the area of monitoring of the status of water bodies in accordance with the monitoring requirements set out in Annex V to Directive 2000/60/EC. Therefore, Member States should be allowed to use of data and services from remote sensing technologies, earth observation (Copernicus services), in-situ sensors and devices, or citizen science data, leveraging the opportunities offered by artificial intelligence, advanced data analysis and processing.

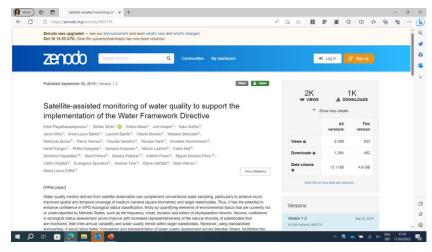
But need to:


- align in situ and satellite remote sensing strategies to achieve the best complementary value
- integrate satellite and in situ observations into policy frameworks


COMPLEMENTARITY

Optical water quality satellite observation can complement (and does not replace) *in situ* sampling efforts

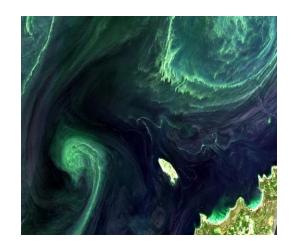
"Which of the water quality variables sampled in your region do you consider to be the most relevant?"



https://monocle-h2020.eu/Resources 2018. CC-BY-NC-SA 4.0 License

WHITE PAPER 2019

E Papathanasopoulou, S Simis, K Alikas, A Ansper, S Anttila, J Attila, ... M L Zoffoli. (2019, September 30). Satellite-assisted monitoring of water quality to support the implementation of the Water Framework Directive (Version 1.2). Zenodo. http://doi.org/10.5281/zenodo.3903776

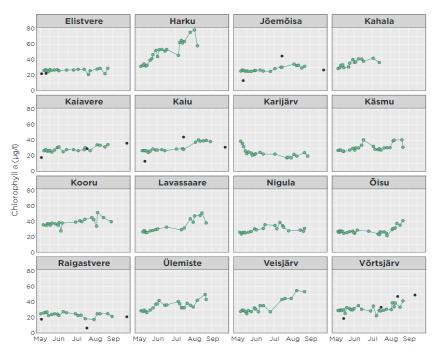

The white paper looks at current satellite-based opportunities through a WFD lens

COMPLEMENTARY VALUE-BIOLOGICAL ELEMENTS

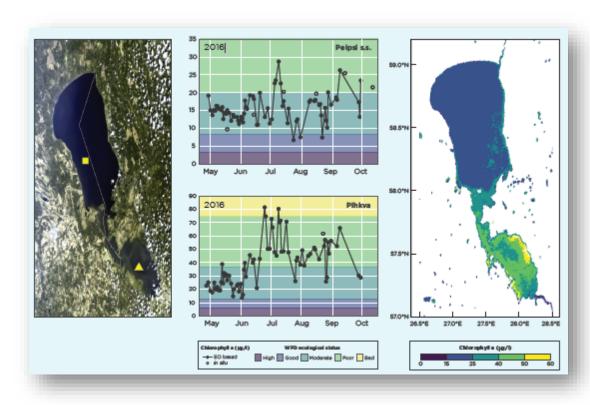
Table 1: Current in situ metrics and corresponding satellite-derived quality	
metrics to be considered	

WFD requirements	National Systems	Satellite-derived proxies to be considered				
QE1 Biological elements						
QE1-1. Phytoplankton						
Abundance and biomass	Extracted chlorophyll-a concentration ⁱ Biovolume of phytoplankton ⁱ	Chlorophyll-a concentration from in vivo pigment absorption ⁱ⁽ⁱ⁾ Trophic State Index derived from Chlorophyll-a				
Composition	Biovolume of cyanobacterial % of cyanobacteria of total biovolumel Various other metrics, trophic indices	Phycocyanin (cyanobacterial pigment) concentration ^v Functional size classes (only in oceanic waters) ^w				
Frequency and intensity of planktonic blooms	Not reported / not possible using conventional monitoring	Chlorophyll-a concentration ^{ii,iii} Phycocyanin (cyanobacterial pigment) concentration ^v Surface accumulations of cyanobacteria ^{vi}				
QE1-2 Other aquatic flora	a					
Macrophyte abundance	Various trophic indices; Submerged vegetation cover ⁱ Total areal coverage ⁱ	Areal cover of floating vegetation				
Macrophyte composition	Proportion of taxa	Not from current satellite sensors, but from airborne surveys ^{vii}				
Macroalgal cover and angiosperm abundance	Combination of spatial extent and relative abundance (measured as density) of macrophytes Abundance of macrophytes ^{vii,ix}	Spatial extent In intertidal areas ^{x,x,x,il} : spatial distribution of seagrass density of sea grass, total surface area of seagrass beds				
QE3. Chemical and physic	co-chemical elements					
QE3-1. General						
QE3-1-1. Transparency	Secchi disk depth (Dissolved organic carbon also used to characterise lake typology)	Satellite backscatter as turbidity, suspended particulate matter weight or vertical transparency (extinction or Secchi depth)				
QE3-1-2. Thermal conditions	Mean water temperature Water temperature range Air temperature	Surface water temperature ^{sv} (in open water > 2 km from land)				

Optical satellite observation can be considered in seven biological and physico-chemical elements.

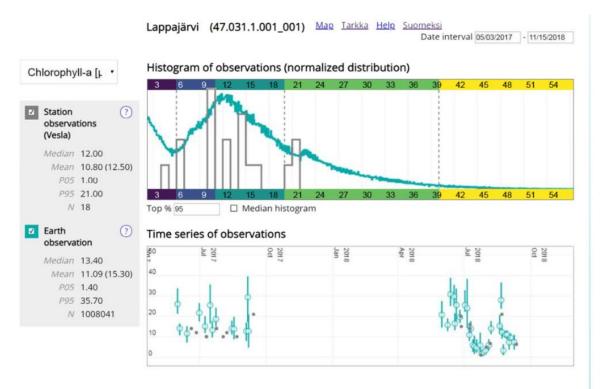

Major improvements possible for *frequency of blooms* because this requires high spatio-temporal coverage.

E Papathanasopoulou, S Simis, K Alikas, A Ansper, S Anttila, J Attila, ... M L Zoffoli. (2019, September 30). Satellite-assisted monitoring of water quality to support the implementation of the Water Framework Directive (Version 1.2). Zenodo. http://doi.org/10.5281/zenodo.3903776


ESTONIA

Analysing satellite observations of lakes and coastal waterbodies

Seasonal dynamics of chlorophyll-a in selected Estonian lakes under WFD reporting obligations from Sentinel-2 satellite during 2018. Black dots denote spectrophotometrically measured (in situ) chlorophyll-a.


Using medium and highresolution sensors, temporal data coverage is > 10x improved. Validation is good on the basis of WFD classes

FINLAND

Satellite products provide complementary information on 87% of the area of Finnish WFD lakes and nearly all coastal waterbodies (4,617 lakes and 276 coastal in the WFD). **Satellite** products were already included in the last two reporting periods

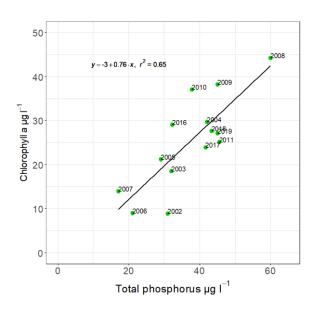
Classification accuracy was within 23% (cf. ±20% uncertainty for laboratory-based Chl-a)

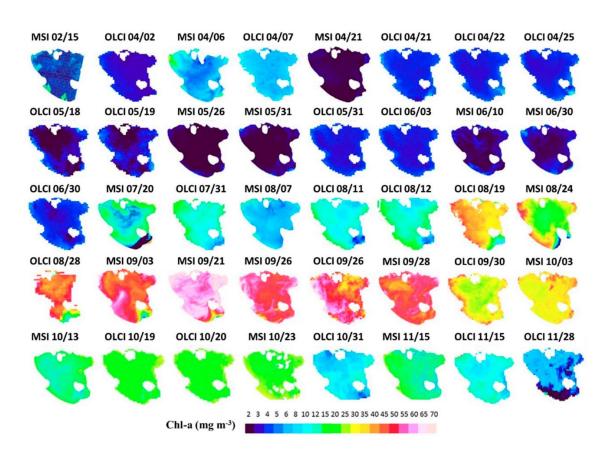
A view of the web application showing statistics, data distributions (histograms) and time series of station and satellitederived chlorophyll-a of a coastal WFD region. In the histogram, WFD status classes are indicated by colours (purple: excellent, blue: good, teal: moderate, green: poor, yellow: bad).

Waterbody statistics include each individual observation in the classification:

N = 18 samples in situ versus

>1M from satellite

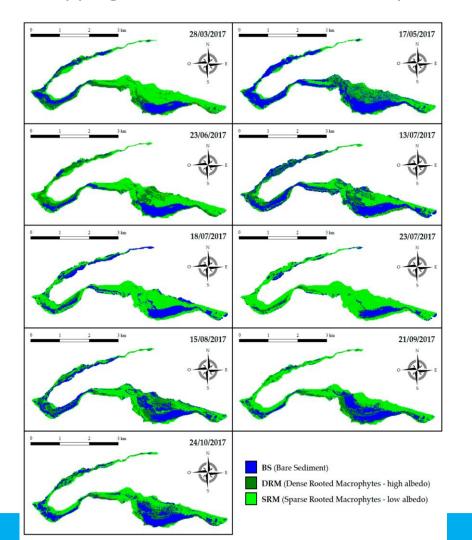

ITALY

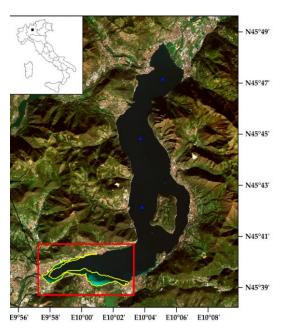

the international water association

Chlorophyll a in Lake Trasimeno (data from Lakes CCI)

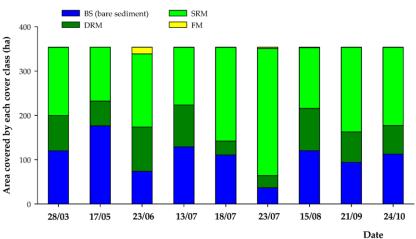
Seasonal monitoring is possible, here combining results from high and medium resolution sensors

Results compare well to Total Phosphorus:

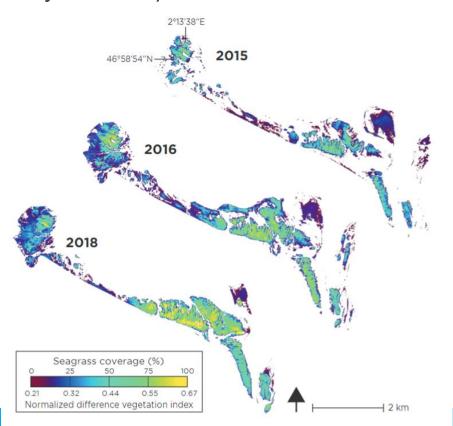

Bresciani et al., 2020 https://doi.org/10.3390/w12010284

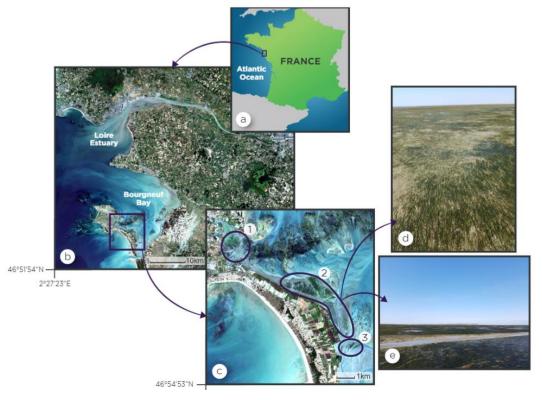

ITALY

the international water association

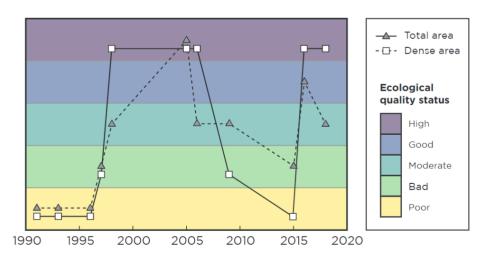

Macrophytes: submerged

Mapping lakes substrates colonised by submerged macrophyte communities





Ghirardi et al. (2020). https://www.mdpi.com/2073-4441/11/3/563


FRANCE

Seagrass mapping from high-resolution satellite provides **seasonal dynamics**. The <u>total</u> area is observed rather than average %cover in quadrats -> different approach (do WFD targets need adjustment?) but more robust

IRELAND

Ecological status predicted from Sentinel-2 for the Glyde-Proules catchment

Assessing ecological status

Until now, only about a quarter of these have been actively monitored

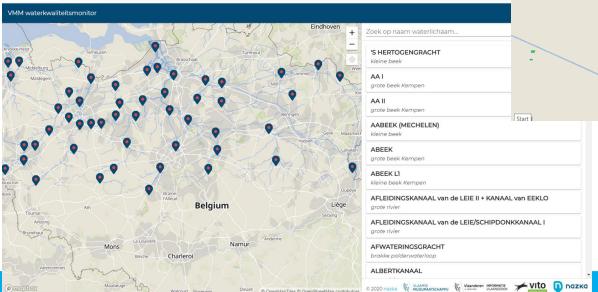
Gary Free, an aquatic environment expert with the EPA, said the new technology would not entirely replace the traditional testing methods, but should help them monitor many lakes which currently go unchecked because of cost constraints.

"It is fascinating the images you get back," he said of the real-time pictures beamed down every time the satellites pass over the State.

"The main thing for us is the layers and layers of information – all the different wavelengths – are reported back by the satellites. It is not a simple snapshot, there are layers of data within it. It can tell you an awful lot about the environment."

https://blog.vito.be/remotesensing/an-eve-on-european-waters

BELGIUM/FLANDERS

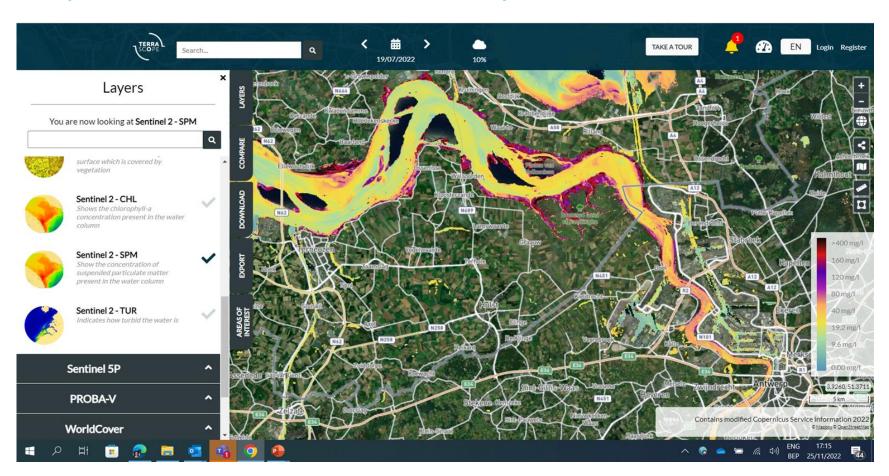

Watermonitor for Flanders Environment Agency (VMM)

VMM waterkwaliteitsmonitor

Demo (2020-2021) NRT Sentinel-2 based Chla + in situ Chl-a

WFD classes/colour code (max Chl-a and summer average Chl-a)

Exceedance alert


https://remotesensing.vito.be/case/watermonitor

BELGIUM/FLANDERS

the international water association

Suspended Particulate Matter and Turbidity-NRT

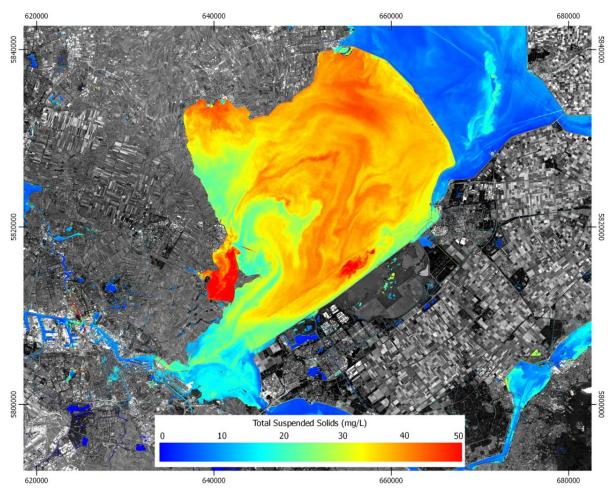
https://viewer.terrascope.be/

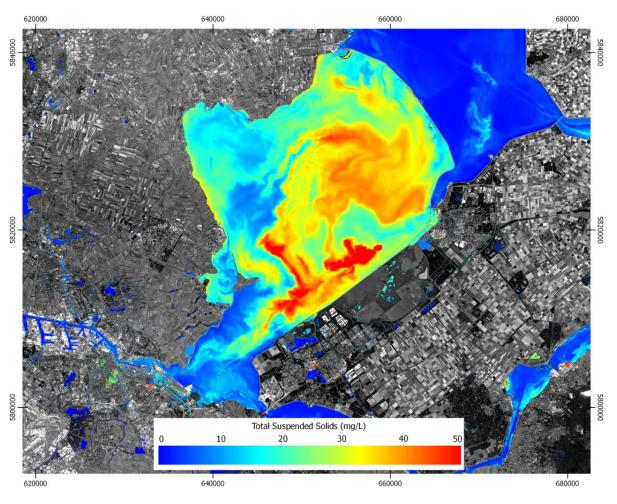
THE NETHERLANDS

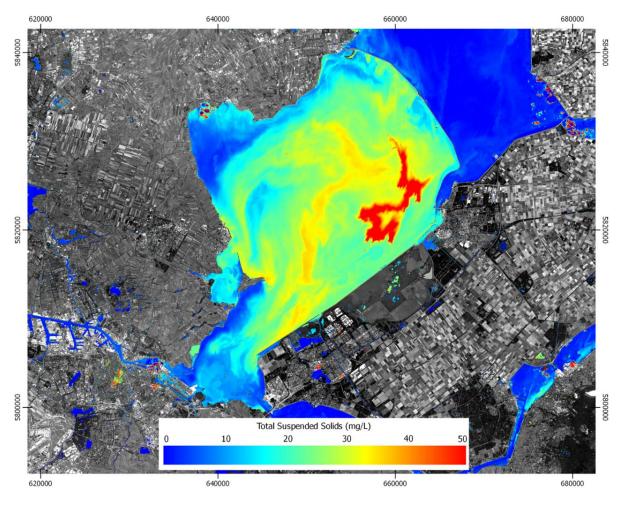
the international water association

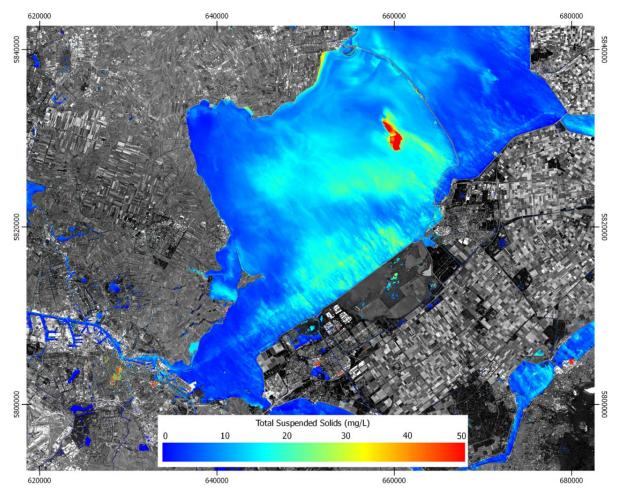
Lake Marken

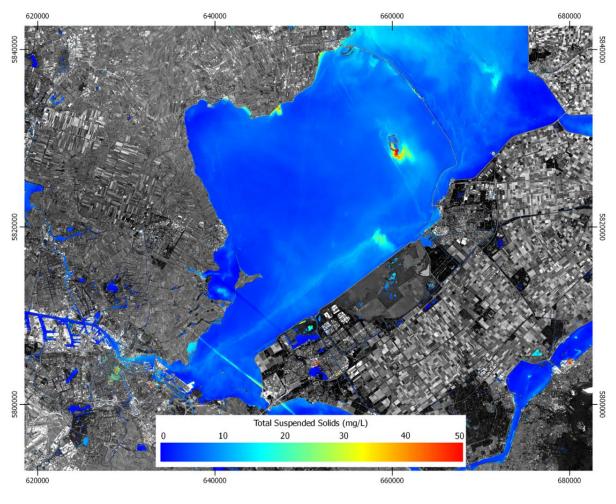
2016: Because of silt dynamics growth of plants and Zebra mussel population decreased (less food for birds)

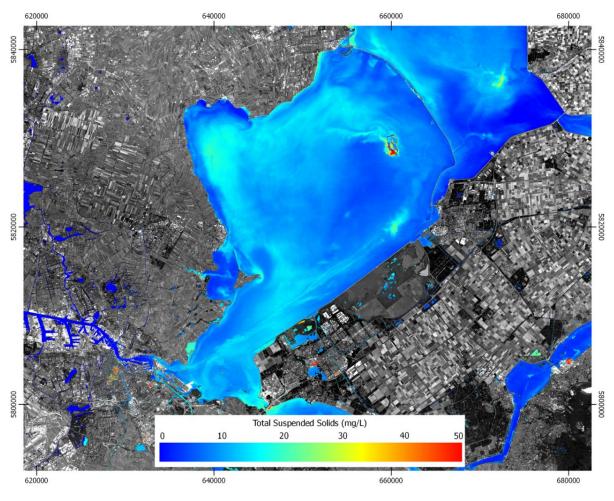

Silt used to create Marken Wadden islands



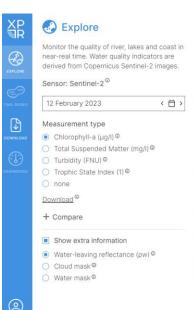

Total Suspended Solids map for Lake Marken, the Netherlands (Landsat-8, 7 January 2015) processed by VITO


Total Suspended Solids map for Lake Marken, the Netherlands (Landsat-8, 12 March 2015) processed by VITO


Total Suspended Solids map for Lake Marken, the Netherlands (Landsat-8, 1 May 2016) processed by VITO


Total Suspended Solids map for Lake Marken, the Netherlands (Landsat-8, 20 July 2016) processed by VITO

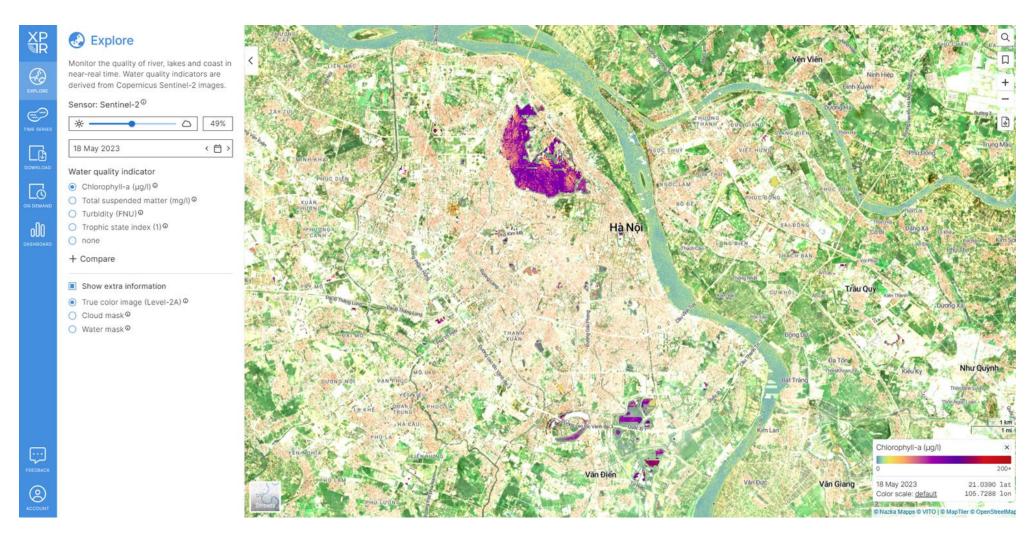
Total Suspended Solids map for Lake Marken, the Netherlands (Sentinel-2A, 8 September 2016) processed by VITO

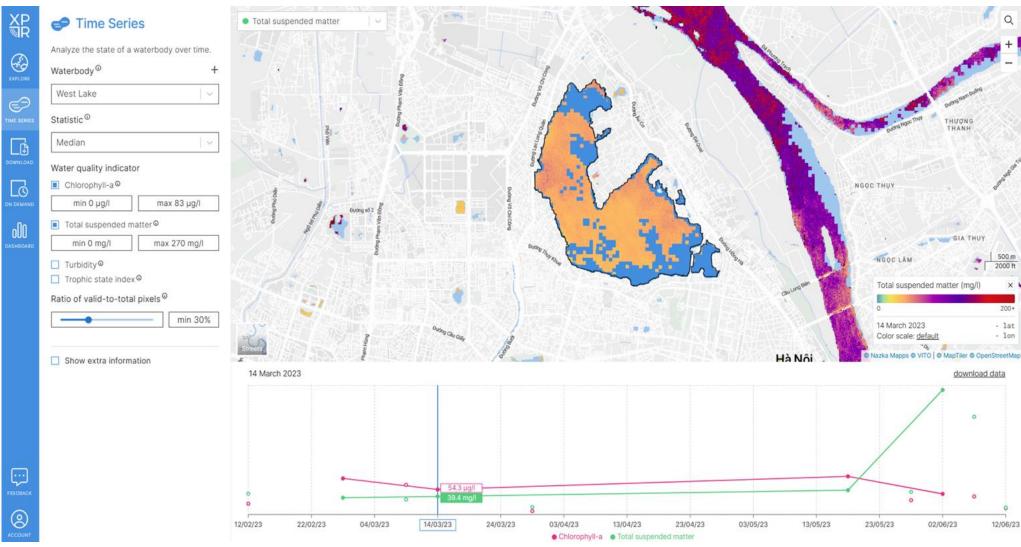

Total Suspended Solids map for Lake Marken, the Netherlands (Sentinel-2A, 15 September 2016) processed by VITO

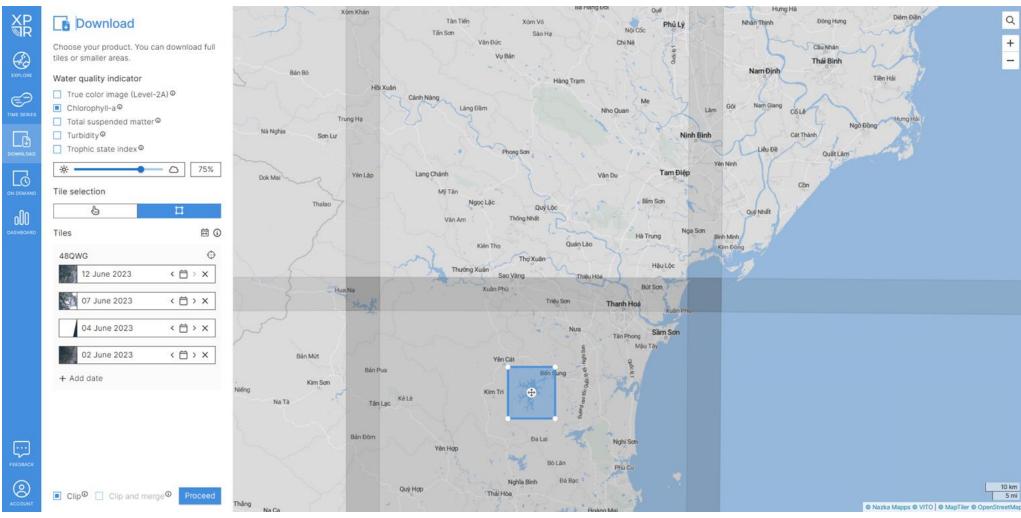

VIETNAM

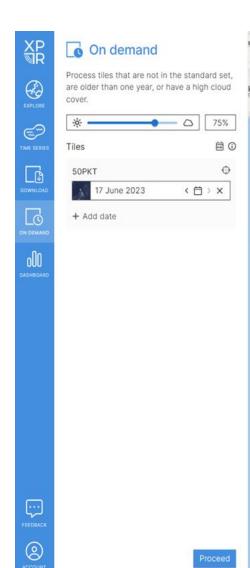
EXPLORE-VNMONITORING EARTH FROM SPACE IN NEAR REAL-TIME

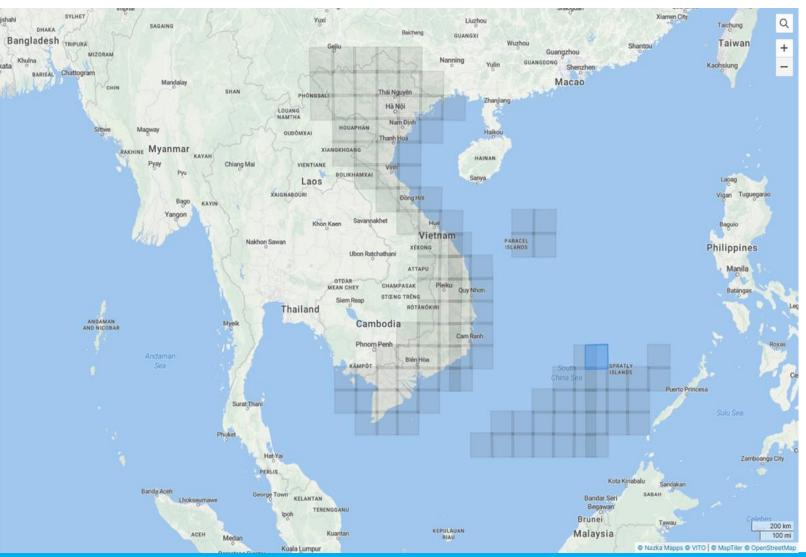
- An operational environment monitoring solution specifically designed for VAST-IG Vietnam based on Earth Observation satellite imagery
- The products are made accessible through a user-friendly web application, making it easy to access and interpret the information
- Client management (Credit system for resource accounting)
- All data can be downloaded for further processing and analysis in own software environment




EXPLORE-VN: EXPLORE


EXPLORE-VN: TIME SERIES


EXPLORE-VN: DOWNLOAD



EXPLORE-VN: ON DEMAND

Roadmap for the Copernicus services

Developing a Roadmap for Copernicus Water Services

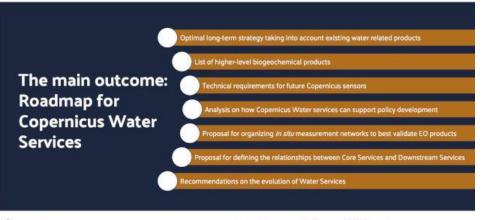
Introduction

Inland and coastal waters play a crucial role in human health and wellbeing, in the global carbon and nutrient cycles, as well as supporting high levels of biodiversity. The Copernicus Programme is an European contribution improving our understanding of the Earth system, including water quantity and quality at regional and global scale.

Six Copernicus Services (Atmosphere, Marine, Land, Climate Change, Security, Energy) deliver water and hydrology related services from Earth Observation, in situ and modelled data.

However, the current Services have some shortcomings:

- · difficulties in getting comprehensive understanding of the global water cycle (water products provided by different Services)
- gaps in water related products
- · unclear which Service should fill which gap
- duplication aspects
- · finding relevant Copernicus products not easy for users



Scope

The Horizon 2020 project "Water scenarios For Copernicus Exploitation", Water-ForCE, will analyse the needs of different users from policy makers, researchers and industry to businesses, NGOs and general public, determine gaps in current Copernicus WATER portfolio, evaluate technical capabilities of present and future Copernicus sensors in providing the necessary information about water quantity and quality. The recommendations on the evolution of water services will be summarised in a Roadmap.

Want to contribute to how the future Copernicus water services will look?

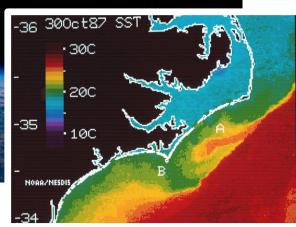
Go to our web page waterforce.eu, register in one of the relevant international working groups and participate in the development of the Roadmap

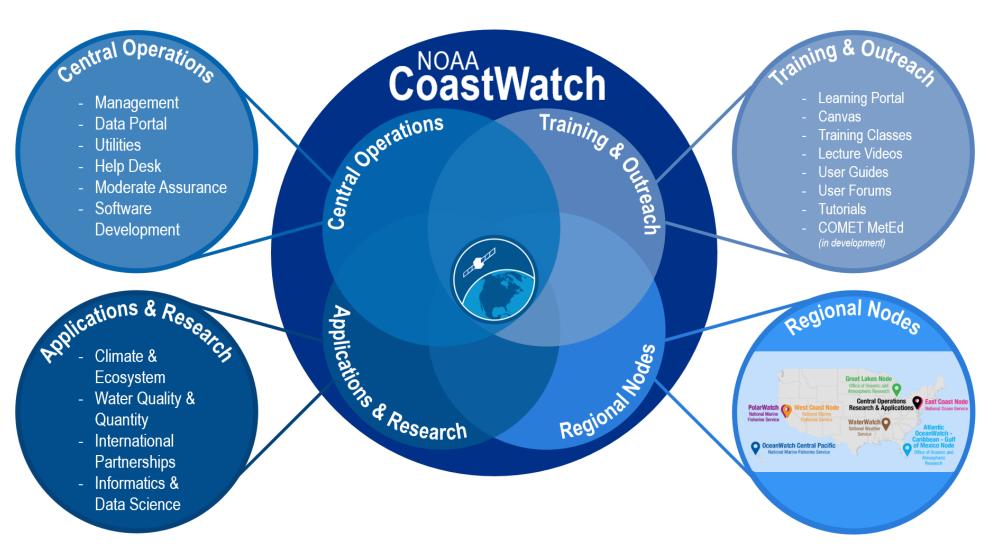
ILS REUSEN, PHD

Boeretang 200 2400 Mol – Belgium ils.reusen@vito.be

remotesensing.vito.be

@VITO_RS_

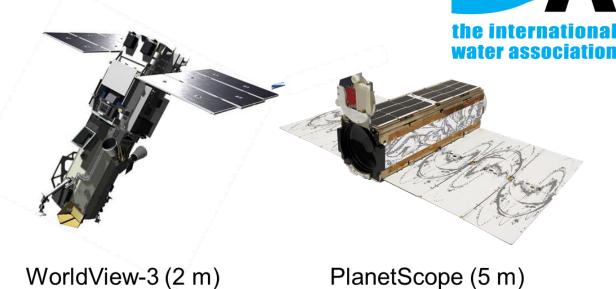



Leveraging a range of Earth observing satellites for aquatic applications

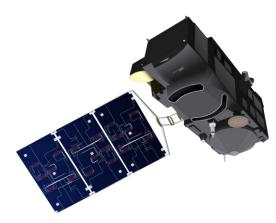
MEGAN COFFER, NOAA/GST

the international

water association

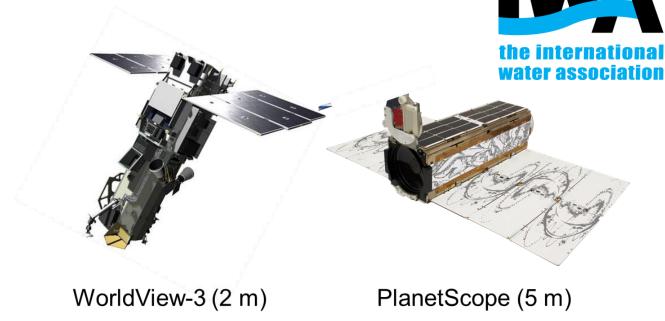

Commercial, high spatial resolution satellite platforms

WorldView-2 (2 m)


Landsat 8 (30 m)

WorldView-3 (2 m)

Sentinel-2 (20 m)

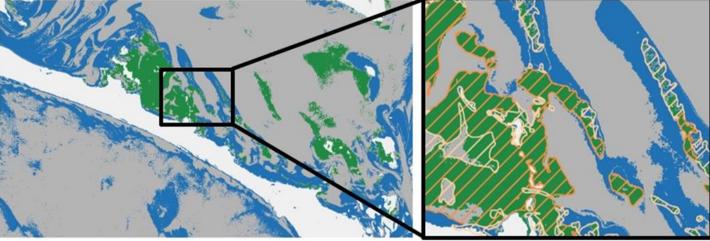

Sentinel-3 (300 m)

open access satellite platforms

Freely available,

Commercial, high spatial resolution satellite platforms

Freely available, open access satellite platforms


Sentinel-3 (300 m)

Back Sound, NC

(a) WorldView-2 image with field data

(b) WorldView-2 image classification

Satellite image classification

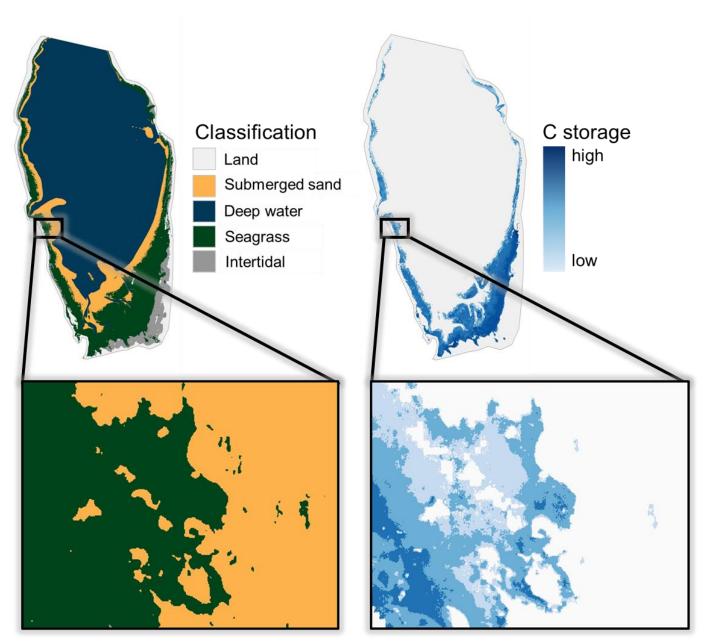
Reference data


Reproducible and semi-automated workflows developed to process commercial satellite data for aquatic applications and classify seagrass extent.

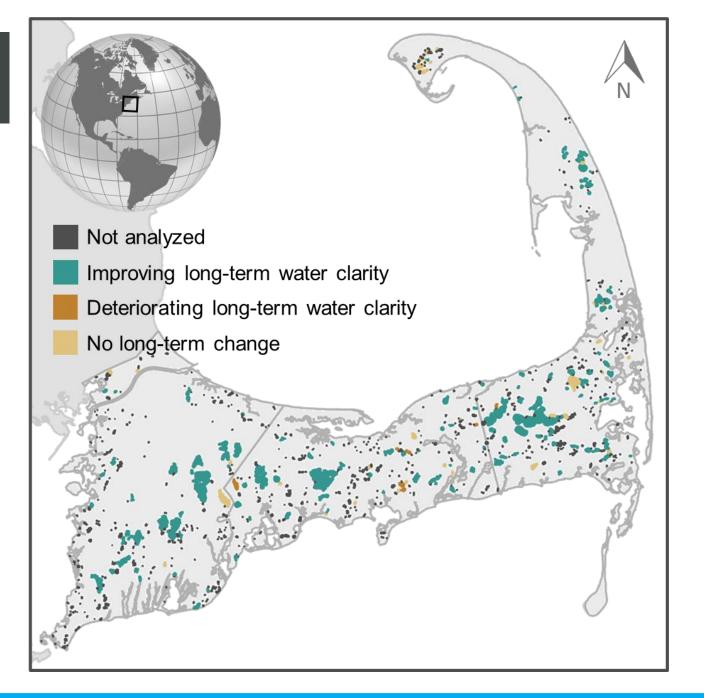
Coffer et al., 2023. J. Environ. Manag.

Where we've been

Where we're going

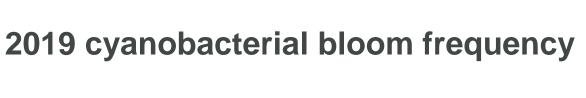


Commercial Earth observing satellites are used by NOAA to retrieve carbon storage estimates from seagrass classification.


In 2010, seagrasses in St. Joseph Bay, Florida, held 1,600 metric tons of carbon, equivalent to CO₂ emissions generated from 4 million gallons of gasoline.

Commercial, high spatial resolution satellite platforms

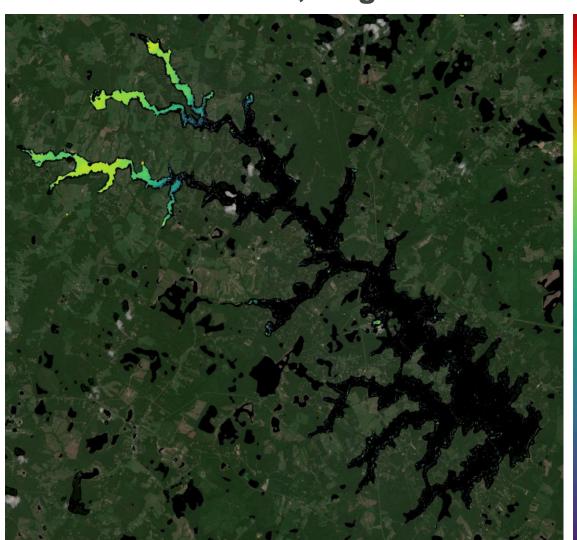
the international water association WorldView-2 (2 m) WorldView-3 (2 m) PlanetScope (5 m) Landsat 8 (30 m) Sentinel-2 (20 m) Sentinel-3 (300 m)


Freely available, open access satellite platforms

Satellite data from the Sentinel-2 mission and the Landsat legacy were used to estimated water clarity across a nearly 40-year time period at Cape Cod, Massachusetts

Coffer et al., In prep. J. Environ. Manag.

CATUTINMIKS AR TNINCISC


AZ OK LA MS AL GA

Bloom
No bloom
No data

Temporal frequency of cyanobacterial blooms computed for over 2,000 lakes across the United States from 2016 to present

Coffer et al., 2021. Ecol. Indic.

Lake Anna, Virginia

Maximum chlorophyll index (MCI)

Currently developing methods to use higher resolution, Sentinel-2 imagery to generate operational chlorophyll-a products across over 150,000 lakes and reservoirs across the United States

Our capabilities

Access and download CoastWatch oceanographic satellite data

Visualize CoastWatch oceanographic satellite data within the portal

Learn how to maximize the use of CoastWatch oceanographic satellite data

Collaborations

Work with CoastWatch to incorporate oceanographic satellite data into products and tools

Data monitoring

Assess the state, availability and stability of oceanographic satellite data products

Value-added products

Leverage novel and innovative satellite data products developed and/or curated by CoastWatch

Within NOAA CoastWatch, we mostly uptake Earth observations through automated routes, and attempt to provide a streamlined source for users to access and interpret satellite data for use in coastal and ocean applications

Q&A Discussion

MODERATOR: KARIN SCHENK

UPCOMING IWA WEBINARS & EVENTS

Learn more about future online events at http://www.iwa-network.org/iwa-learn/

UPCOMING IWA WEBINARS & EVENTS

IWA Digital Water Summit

BILBAO SPAIN

14-16 November 2023

The Latest in Digital Developments

www.digitalwatersummit.org

Find out more at:

https://digitalwatersummit.org/

UPCOMING IWA WEBINARS & EVENTS

Find out more at:

https://waterdevelopmentcongress.org/

IWA brings professionals from many disciplines together to accelerate the science, innovation and practice that can make a difference in addressing water challenges.

Use code WEB23RECRUIT

for a **20% discount off** new membership.

Join before 31 December 2023 at: www.iwa-connect.org

Learn more at

http://www.iwa-network.org/iwa-learn/