

inspiring change

WEBINAR INFORMATION

- This webinar will be recorded and made available "ondemand" on the <u>IWA Connect Plus</u> platform, with presentation slides, and other information.
- The speakers are responsible for securing copyright permissions for any work that they will present of which they are not the legal copyright holder.
- The opinions, hypothesis, conclusions or recommendations contained in the presentations and other materials are the sole responsibility of the speaker(s) and do not necessarily reflect IWA opinion.

WEBINAR INFORMATION

- 'Chat' box: please use this for general requests and for interactive activities.
- 'Q&A' box: please use this to send questions to the panelists.
 - (We will answer these during the discussions and in post-webinar materials.)

Please Note: Attendees' microphones are muted. We cannot respond to 'Raise Hand'.

THE SEED WAS PLANTED IN COPENHAGEN!

- IWA World Water Congress & Exhibition, Copenhagen 2022
 - Workshop: The road to a climate and energy neutral water sector
 - Launch: Report: The Road towards a Nordic climate neutral water sector

ORGANISATION

			Jacobs
Name	Title	Affiliation	🤲 Envidan
Brenda Ampomah-Ankrah	Strategic Programmes Officer	IWA	
Charles Joseph	Strategy and Insights Manager	IWA	
Amanda Lake	Head of Carbon and Circular Economy	Jacobs	
Anna Katrine Vangsgaard	Senior Process Engineer	Envidan	
Jacob Kragh Andersen	Innovation Manager, Sustainability	Envidan	

DRIVERS IN DENMARK

- Target in Denmark: energy and climate neutral water sector by 2030
- Cooperation between legislators, technology providers, consultants, etc.
- Legislation is founded on real data (studies funded by Danish EPA and EA)
 - 0,84 % N₂O-N/TN inlet (9 WWTPs) new Danish EF
 - 7,7 % CH₄ loss (24 WWTPs)
- Legislation
 - N₂O limit implemented no later than 2025 for WWTPs > 30.000 PE
 - CH₄ internal protocol and annual check by third party

AGENDA

- Welcome and introductions
 - Jacob Kragh Andersson (moderator)
- Greenhouse gas emissions from EU wastewaters

Alberto Pistocchi/Vanessa Parravicini

Q&A

Nordic principles for a climate neutral water sector

Miriam Feilberg

Q&A

Case study, Bergen Vann

Natalia Liliana Adamczyk

Q&A

- Q&A Discussion
- Final remarks and conclusion

WHAT NEXT: 3 FURTHER WEBINARS

Monitoring and mitigating methane: Danish lessons for global action-Amanda, Jacobs

26 June

Monitoring and mitigating nitrous oxide: Danish lessons for global action- Anna Katrine, Envidan

12 September

Climate Smart Water Futures within Planetary Boundaries- IWA GHG working group

12 October

MODERATORS & PANELISTS

Jacob Kragh Andersen Envidan, Denmark

Alberto Pistocchi DG Joint Research Center, Italy

Miriam Feilberg DANVA Denmark

Natalia Liliana Adamczyk Bergen Vann Norway

Greenhouse gas emissions from the EU urban wastewater sector

TI,

WIEN

ALBERTO PISTOCCHI (PRESENTING) EC JRC

VANESSA PARRAVICINI

TU WIEN

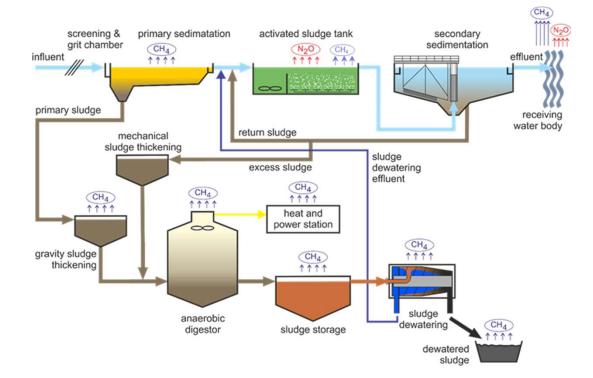
Bau & FACULTY OF CIVIL AND ENVIRONMENTAL ENGINEERING INSTITUTE OF WATER QUALITY AND RESOURCE MANAGEMENT

inspiring change

REDUCTION OF GHG EMISSION IN EU

- European Green Deal 2019 → the EU has adopted ambitious goals for the reduction of greenhouse gas emissions along with pollution reduction and circular economy.
- Wastewater collection and treatment is a contributor to the overall GHG emissions of the EU, and is reported as such under the UN Framework Convention on Climate Change.
- Goal of the study:
 - estimate of GHG emissions from wastewater collection and treatment at the European scale, including indirect emissions (scope 2 and 3)
 - examine possibilities and limitations for reducing wastewater related GHG emissions
 - discuss the respective burdens and benefits of selected scenarios in order to support the design of policies in the sector

SOURCES OF GHG EMISSIONS IN WASTEWATER COLLECTION AND TREATMENT


- Direct Emissions
 - all sources addressed by the IPCC guidelines (2006 and 2019)
- Indirect Emissions (construction and operation, electricity and P reagents)
- CO₂e burdens and credits

Burdens	Direct	Indirect
Construction	CO_2 e from fuel consumption, etc.	- CO ₂ e from use of electricity, manufactured goods, etc.
Operation	- Fugitive N_2O , CH_4 - Fugitive CO_2 mostly biogenic in origin (carbon neutral)	 CO₂e from use of electricity, manufactured goods, etc. N₂O, CH₄ from receiving water bodies
Credits		
Operation	avoided CO ₂ e emissions electricity) or resources	by production of net energy (e.g. (e.g. biomethane)

SOURCES OF DIRECT GHG EMISSIONS IN WASTEWATER TREATMENT

- N₂O from biological stage (nitrification/ denitrification)
- CH₄ from sludge line (e.g. fugitive biogas emissions, slip in CHP units)
- N₂O and CH₄ in the effluent (IPCC, 2019)

https://www.sciencedirect.com/science/article/pii/S0048969722034192

CLIMATE

UTILITIES

SMART

the international

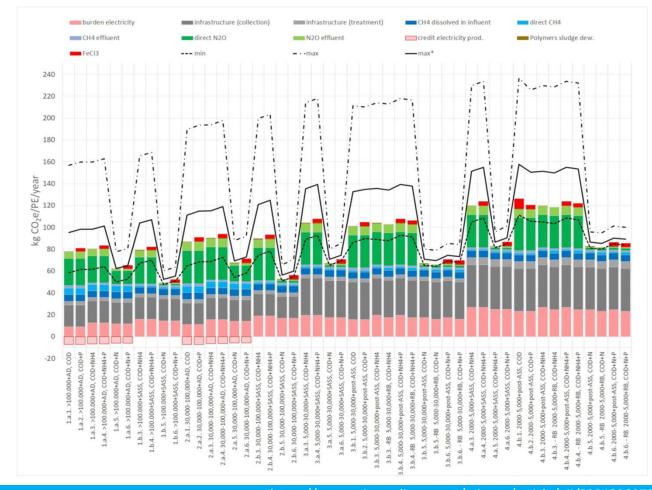
water association

METHODOLOGICAL APPROACH OF THE ESTIMATION AT EU LEVEL

Set of plant design/operational typologies encompassing

Treatment specifications

- COD removal only
- COD + NH₄⁺ removal
- COD + N removal
- with/without P removal


Plant size

- pollutant loads
- energy consumption
- <u>type of sludge stabilisation (e.g. AD, SASS)</u>
- Emission for sludge transport and disposal not included
- Operation and infrastructure included

EF-N₂O for the biological stage was set lower at plants targeting N-removal over denitrification

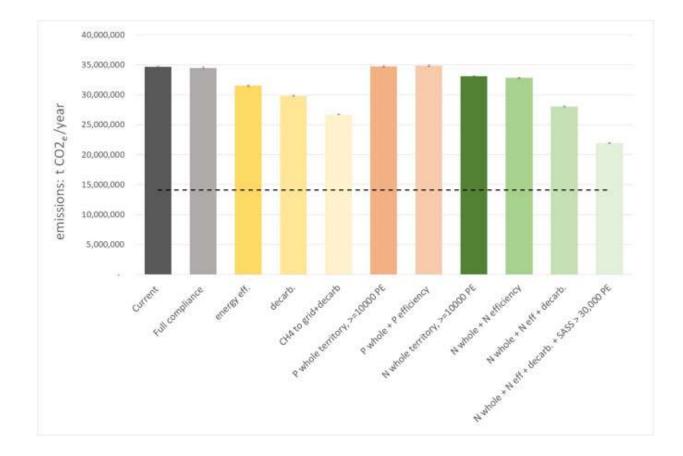
ESTIMATED ANNUAL CO₂e-EMISSION PER PE

Relevant sources:

- Infrastructure of sewer system
- Electricity consumption in operation
- Level of treatment impacts direct N₂O emission
- Positive scale impact at bigger plants

inspiring change

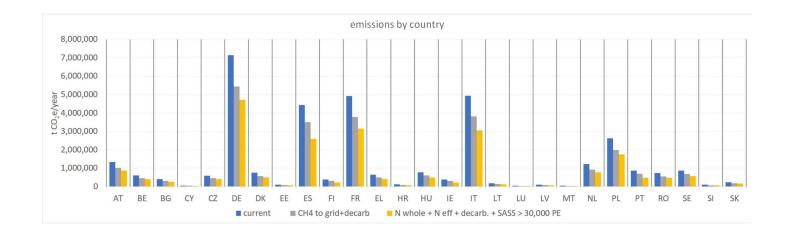
https://www.sciencedirect.com/science/article/pii/S0048969722034192


CLIMATE Smart

UTILITIES

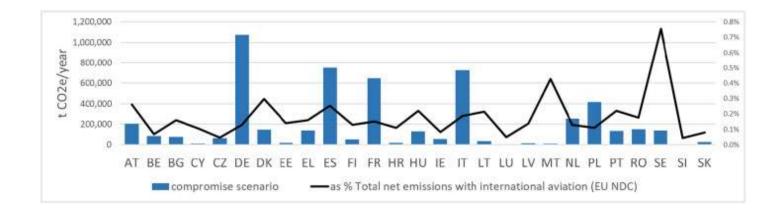
the international water association

SCENARIOS OF GHG EMISSIONS EU LEVEL



inspiring change

https://www.sciencedirect.com/science/article/pii/S0048969722034192



SCENARIOS OF GHG EMISSIONS BY COUNTRY

ADVANCED WASTEWATER TREATMENT

inspiring change

https://www.sciencedirect.com/science/article/pii/S0048969722046915

18


KEY MESSAGES

Emissions of European wastewater treatment

50-125 kg CO₂e/PE/year (20-40 embedded in infrastructure)

- Mainly direct N₂O emissions and electricity in operation, then direct CH₄ emissions
- Extrapolating to the EU, cumulative emission ca. 35 million t CO₂e/year (14 in infrastructure)
- Efficient electricity use and decarbonization significantly help reduce emissions
- Denitrification decreases direct nitrous oxide emissions

inspiring change

Nordic Principles - for a climate neutral water sector

MIRIAM FEILBERG, DANVA

inspiring change

THE NORDICS

- Climate change our responsibility
- EU Green Deal and climate goals
- UWWTD
- Stronger voice in Europe
- Strength in domestic policymaking

CLIMATE

UTILITIES

the international water association

OUR PROJECT

- What do we need to become climate neutral?
- Is it possible?

Parameter	Denmark	Sweden	Norway	Finland
Estimated for year:	2017	2019	2019	2007
Total emission estimates	218.000 t CO ₂	*228.000 t CO ₂	**185.000 t CO ₂	310-400.000 t CO ₂
Inhabitants	5,8 mio. inh.	10,1 mio. inh.	5,4 mio. inh.	5,5 mio. inh.
Inhabitants connected to municipal and/or public water & wastewater sys- tems	5,6 mio. inh. (water) 5,2 mio. inh. (wastewater)	9 mio inh.	4,8 mio. inh. (water) 4,7 mio.inh. (wastewater)	4,8 mio inh. (water) 4,5 mio inh. (waste water)
Emission estimate/inhabi- tant	38 kg CO ₂ /inh.	23 kg CO ₂ /inh.	34 kg CO ₂ /inh.	56-73 kg CO ₂ /inh.
Total national emissi- ons***	61 mio. t CO ₂ /år (2020)	51 mio. t CO ₂ /år (2019)	49 mio. t CO ₂ /år (2020)	48 mio. t CO ₂ /år (2020)
Total national emissions, 1990	77 mio. t CO ₂ /år	71 mio. t CO ₂ /år	41 mio. t CO₂/år	71 mio. t CO ₂ /år
Contribution from water sector of national emis- sion	0,4 %	0,4 %	0,4 %	0,6-0,8 %

Table 1. Overview of GHG emissions estimates for the four Nordic countries for the entire water sector.

*Covers only sludge handling and wastewater treatment

**Calculated based on a 2019 estimate of 740.000 t CO₂, which included buildings and infrastructure (estimated at 75 % of total emissions).

**(Energistyrelsen, 2021a) / (Naturvårdsverket, 2019) / (Energi og Klima, 2020) / (Tilastokeskus, 2020)

NORDIC WATER SECTOR TARGETS

- Denmark: Climate and energy neutral in 2030, operations
- Finland: Roadmap -> carbon neutral water sector by 2028-2030
- Norway: Reduce GHGemissions by 50-55% in 2030
- Sweden: Climate neutral in 2030, operations

OVERALL AIM AND CONTENT

Part I: Background and status in the four Nordic countries and presentation of common principles

<u>Part II</u>: Application of common principles and examples of use of climate accounting models (real data from utilities in the four Nordic countries).

UTILITIES

Table 2. Overview of the parameters that are included in the Nordic countries' water sectors' climate models or future climate models. Red marked parameters indicate emissions, Green marked parameters indicate avoided emissions. Green dots (•) = included; Red dots (•) = not included.

	Parameter	DK	SE (SVU) ***	N	FI
ww	Consumption of electricity and heat	•			
	Consumption of chemicals	•	· · · ·	0	
	Handling of residues	•		•	
	Transportation			0	
	Afforestation (to protect groundwater				
	Other CO2 reducing activities*			•	
Sewers	Consumption of electricity and heat	•	٠	•	
	Production of pipes				et
	Construction			0	en initiated yet
	Handling of filter materials				iate
WWTP	Consumption of electricity and heat	•			qiu
	Consumption of fuel (diesel)				-ua
	Sold energy (electricity, heat, biogas)	•	•		4
	Consumption of chemicals	•			20
	Consumption of filter materials			0	Sp
	Sludge handling				K h
	Transportation		0		vor
	CH ₄ emissions (biogas)				al work has no
	N ₂ O emissions (process)	•	•		ţ;
	N2O emissions avoided**	•			Nä
	CH₄ from septic tanks			0	
	P recycling (subs. of virgin P)				
	N ₂ O emissions, effluent				
	Emissions, use of sludge				
	Avoided emissions, use of sludge				
	CH4 emissions, effluent				
	Carbon binding				

*: e.g. further new reduction measures in relation to N2O emissions from WWTP, wetlands in connection with tariff-financed climate adjustment, technologies for carbon storage, collaboration with external partners on installation of heat pumps.

**: this is a theoretical calculation on the emission that is avoided by having the WWTP.

***: New simplified model under development

	Parameter	Data availability	Importanc	e	Comments	Suggested result	
WW	Consumption of electricity and heat	Good	Medium		Typically, low consumption, easy to evaluate	•	
	Consumption of chemicals	Good	Low	Medium	Typically, low consumption, easy to evaluate	•	
	Handling of residues	Good	Low		Typically, low production, easy to evaluate	•	
	Transportation	Good	Low		Typically, low contribution, easy to evaluate	•	
	Afforestation	Medium	Medium		Not a typical parameter for the water sector, but might be relevant		
	Other CO ₂ reducing activities	Variable	Medium	High	New reduction measures in relation to N2O emissions from WWTP. Important to reach climate neutrality	•	
Sewers	Consumption of electricity and heat	Good	Medium		Typically, relatively low consumption, easy to evaluate	•	
	Production of pipes				Not relevant, since the focus is on the operation phase		
	Construction				Not relevant, since the focus is on the operation phase		
	Handling of filter materials	Good	Low		Typically, low consumption, easy to evaluate	•	
WWTP	Consumption of electricity and heat	Good	Medium	High	High consumption, but varying EF for production, e.g., high in Denmark, low in Sweden.	•	
	Consumption of fuel	Good	Low		Typically, low consumption, easy to evaluate	•	
	Sold energy	Good	High		Typically, high amount, easy to evaluate	•	
	Consumption of chemicals	Good	Medium	High	Variable amounts, e.g., low chemical consumption in Denmark, high in Sweden. Easy to assess.	•	
	Consumption of filter materials	Good	Low		Typically, low consumption, easy to evaluate	•	
	Sludge handling	Medium	Medium	High	Typically, low contribution, relatively easy to evaluate	•	
	Transportation	Medium	Low		Typically, low contribution, but might be tricky to evaluate transportation distances (e.g., for sludge disposal)	•	
	CH ₄ emissions (biogas)	Low*	High		High contribution, typically. Bad data availability unless the emissions are measured at the specific WWTP	•	
	N ₂ O emissions (process)	Low*	High		High contribution, typically. Bad data availability unless the emissions are measured at the specific WWTP	•	
	N ₂ O emissions avoided				Not relevant, since the focus is on the operation phase		
	CH ₄ from septic tanks	Medium	Medium		Significant contribution, but variable importance due to variations in number of septic tanks in different areas		
	P recycling (subs. of virgin P)	Medium	Low		Typically, small amounts of recovered P	•	
	N ₂ O emissions, effluent	Low	Medium		Not a lot of specific data, but might be significant	•	
	Emissions, use of sludge	Variable	Variable		Large variations depending on the use (use on land, incineration, pyrolysis etc.). Significant contribution		
	Avoided emissions, use of sludge	Variable	Variable		Large variations depending on the use (use on land, incineration, pyrolysis etc.). Significant contribution		
	CH ₄ emissions, effluent	Medium	Medium		Not a lot of specific data, but might be significant		
	Carbon binding	Medium	Medium		Not a lot of specific data, but might be significant	•	
New	CH ₄ from sewer systems	Low	Low	Medium	Not a lot of specific data, but might be significant		
	CH ₄ from WW	Low	Low	Medium	Not a lot of specific data, but might be significant		
	Chemicals. sewer	Good	Low		Typically, low consumption, relatively easy to evaluate	•	

PART I: COMMON PRINCIPLES

- Cooperate and learn from each other
- Include all emissions (and avoided emissions) from both water supply (water works), transportation of wastewater (sewage system) and Wastewater treatment (WWTPs)
- Start by including the operational level emissions from construction and demolition can be included in a later phase
- Start measuring climate emissions and establish baseline calculations
- Emission factors should be based on latest calculations, measurements, scientific results
- Keep the model and reporting as simple as possible, while still including the most important contributions – the 85% model
- Start by selecting contributors where data availability and significance is high

Table 5. Overview of parameters included for climate accounting in relation to Water works / drinking water

Selected sum-emissions:	Scope	Sweden	Norway	Finland	Denmark
1. Consumption of electricity (Pur- chased)	2	Yes	Yes	Yes	Yes
2. Consumption of heat/energy (pur- chased)	2	Yes	Yes	Yes	Yes
3. Consumption of chemicals	3	Yes	Yes	Yes	No
4. CO ₂ reducing activities – substitu- tion of products, production of electric- ity/heat or Carbon Capture	3	Yes	Yes	Yes	Yes
5. List of emissions not included					*

*CH₄ in groundwater (Scope 1)

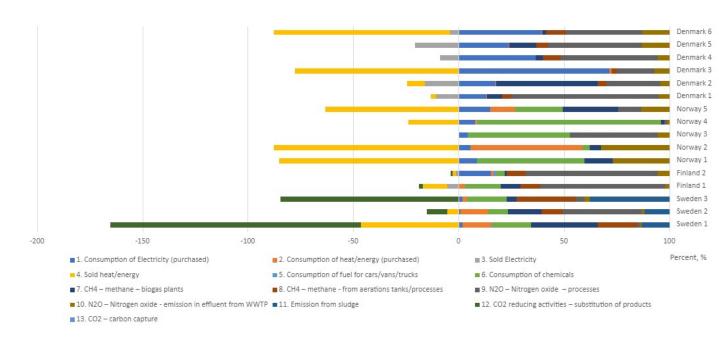
Table 6. Overview of parameters included for climate accounting in relation to Transportation / sewer system

Selected sum-emissions:	Scope	Sweden	Norway	Finland	Denmark
1. Consumption of electricity (Pur- chased)	2	Yes	Yes	Yes	Yes
 Consumption of heat/energy (pur- chased) 	2	Yes	Yes	No	Yes
3. List of emissions not included	<u> </u>			8	*

*Avoided N₂O to nature based on the removed nitrogen at WWTP

Table 7. Overview of parameters included for climate accounting in relation to Wa	stewater
Treatment Plants	

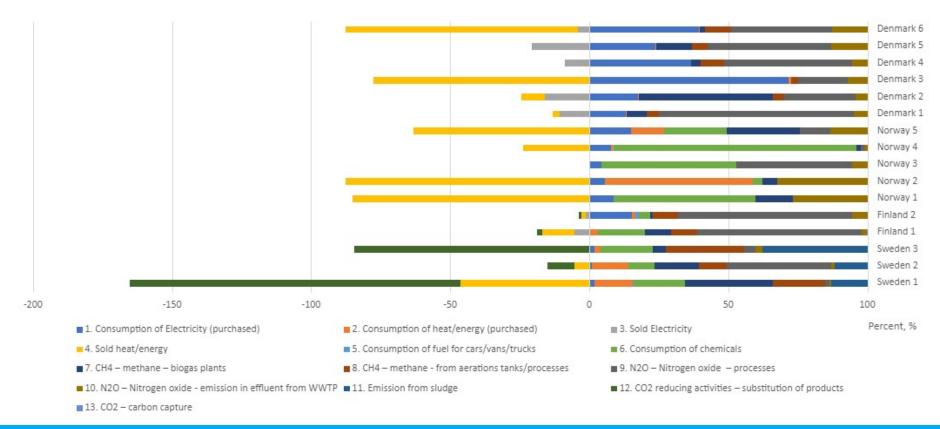
Selected sum-emissions:	Scope	Sweden	Norway	Finland	Denmark
1. Consumption of electricity (pur-	2	Yes	Yes	Yes	Yes
chased)					
2. Consumption of heat/energy (pur- chased)	2	Yes	Yes	Yes	Yes
3. Sold Electricity	2	Yes	Yes	Yes	Yes
4. Sold heat/energy	2	Yes	Yes	Yes	Yes
5. Consumption of fuel for cars/vans/trucks	3	Yes	Yes	Yes	No
6. Consumption of chemicals	3	Yes	Yes	Yes	No
7. CH ₄ - emissions – biogas plants	1	Yes	Yes	Yes	Yes
8. CH ₄ - emissions - from aerations tanks/processes	1	Yes	No	Yes	(Yes)
9. N ₂ O - emissions - processes	1	Yes	Yes	Yes	Yes
10. N ₂ O - emission in effluent from WWTP	1	Yes	Yes	Yes	Yes
11. Emissions from sludge	?	Yes	No	Yes	no
12. CO ₂ reducing activities - substitu- tion of products	?	No	No	Yes	Yes
13. CO ₂ - carbon capture	?	No	No	No	No
14. List of emissions not included	3				


PART II - IS IT POSSIBLE?

CAN WE MEASURE AND TRACK PROGRESS?

PART II – EXAMPLE, CLIMATE ACCOUNTING WWTP

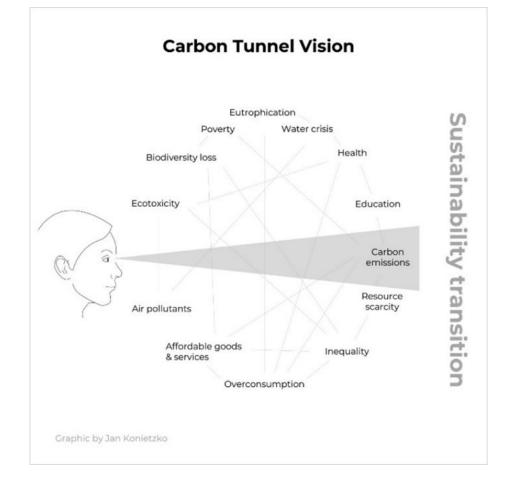
- Utilities from the four Nordic countries have delivered data from:
 - 14 water works
 - 12 sewer systems
 - 16 wastewater treatment plants
- Large variations between utilities and between countries
- All data is available in the final report – Part II



Wastewater Treatment Plants

Wastewater Treatment Plants

inspiring change


TAKE HOME MESSAGES

- Start by measuring emissions and avoided emissions (make baseline)
- Start by focusing on the most significant contributors
- Set ambitious targets
- It is possible to calculate the emissions, set targets, and follow progress
- When you are comfortable with climate accounting for the operational phase, you can start with the construction phase

REMEMBER...

- Water utilities need to consider simultaneously various goals (e.g. energy and CO₂ neutrality)
- There is often a trade-off between different environmental targets, costs, and quality!
- GHG emissions are not the only area of focus for sustainability

QUESTIONS?

THE ROAD TOWARDS A NORDIC CLIMATE NEUTRAL WATER SECTOR

ODANVA 🔂 FIWA

Norsk Vann Svenskt Vatten

https://www.danva.dk/media/8868/14-09-2022-the-roadtowards-a-nordic-climate-neutral-water-sector.pdf

inspiring change

How to start and maintain your own carbon footprint calculations

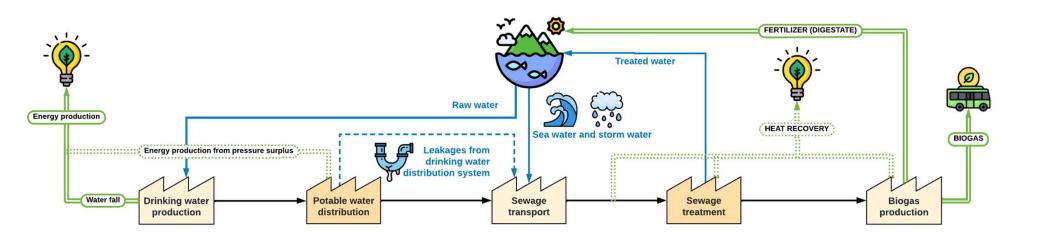
NATALIA LILIANA ADAMCZYK BERGEN VANN, NORWAY

SOME BACKGROUND

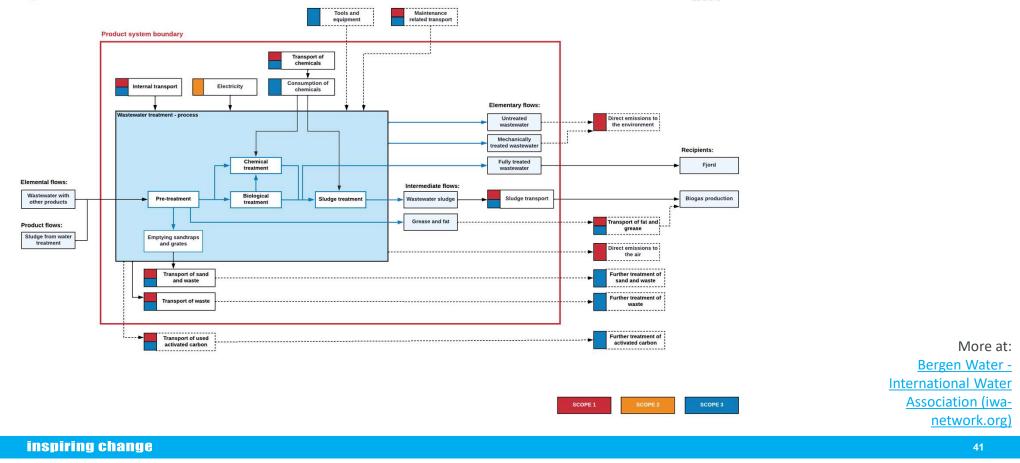
World Water Congress & Exhibition 2022

Picture: www.freepik.com

Developing climate footprint calculations to achieve climate neutrality



Natalia Adamczyk Bergen Vann – Bergen Municipality's Water, Wastewater and Urban drainage Utility Norway



1. KNOW YOUR VALUE CHAIN

1. KNOW YOUR VALUE CHAIN

Product system for wastewater treatment

🔹 bergen vann

Approved Life Cycle Assessment ISO 14040

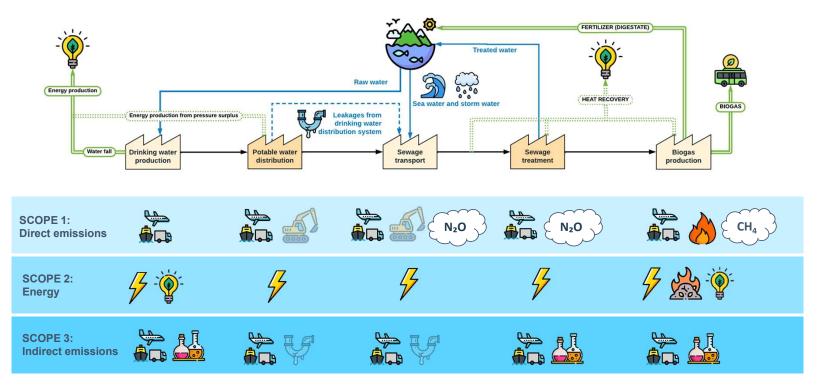
1. KNOW YOUR VALUE CHAIN

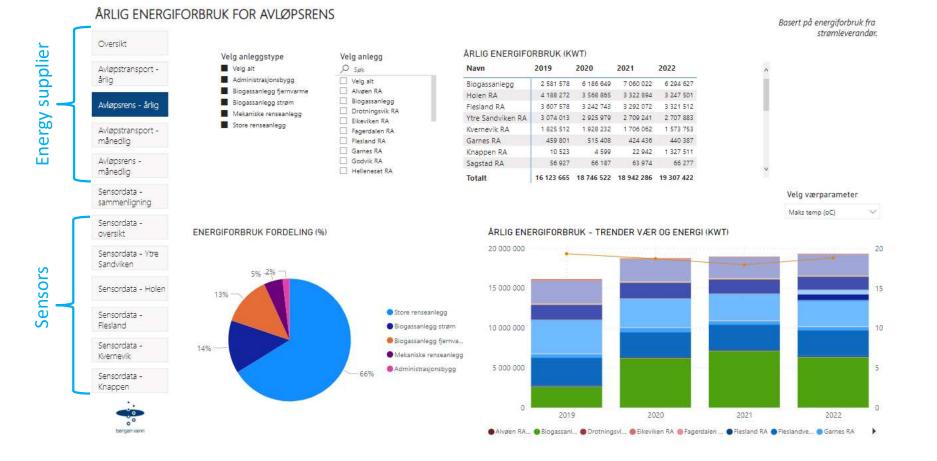
NS 3720:2018 - Method for greenhouse gas calculations for buildings

EN 15978:2011 - Sustainability of construction works - Assessment of environmental performance of buildings - Calculation method

Project				Operations						Project									
Pro	oduct st	tage	(Con	structi sta	on pro age	cess				Use	stage				E	nd of li	ife stag	je
A1	A2	A3	Α	4	A5	A6	A7	B1	B2	B3	B4	B5	B6	B7	B8	C1	C2	C3	C4
Raw material supply	Transport	Manufacturing	Transnort		Construction and installation process	Mass management	Impact on ecosystems and organisms	Use	Maintanance	Repair	Replacaement	Refurbishment	Operation energy use	Operational water use	Transport	De-construction	Transport	Waste processing	Disposal

2. ORGANIZE YOUR EMISSIONS


Product stage	Construction process stage	Use stage	End of life stage
A1 A2 A3	A4 A5 A6 A7	B1 B2 B3 B4 B5 B6 B7 B8	C1 C2 C3 C4
Raw material supply Transport Manufacturing	Transport Construction and installation process Mass management Impact on ecosystems and organisms	Use Maintanance Repair Replacaement Refurbishment Refurbishment Operation energy use Operational water use Transport	De-construction Transport Waste processing Disposal


2. ORGANIZE YOUR EMISSIONS

Transparent icons applies to the footprint calculations we plan to start the next couple of years. This also includes nitrous oxide emissions from wastewater direct discharge/ leakages to recipient and methane leakages at the biogas plant.

3. UNDERSTAND YOUR DATA (AND ITS PURPOSE)

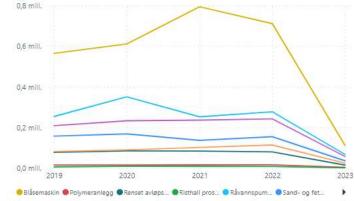
bergen vann

3. UNDERSTAND YOUR DATA (AND ITS PURPOSE)

SCADA-system.

MÅNEDLIG ENERGIFORBRUK FOR FLESLAND - SENSORDATA

Basert på energiforbruk fra


ENERGIFORBRUK BYGG (KWT)

Prosessdel navn	2019	2020	2021	2022	2023
Elektrokjel	209 920	505 612	941 038	1 185 691	31 359
El-rom	383 163	280 463	324 553	345 438	69 367
Tunnel	149 933	92 489	95 727	167 583	33 617
Varmepumper	21 378	13 723	46 730	41 428	200
Verksted	8 572	25 306	23 970	10 974	1 442
VVS - varmeanlegg	138 473	177 212	155 446	154 967	29 151
VVS - Ventilasjon	463 185	459 350	322 501	344 816	52 860
Totalt	1 374 624	1 554 157	1 909 964	2 250 897	217 997

- O Bygg
- Prosess

ENERGIFORBRUK VED ULIKE PROSESSER OG ANLEGGSDELER (KWT)

3. UNDERSTAND YOUR DATA (AND ITS PURPOSE)

MÅNEDLIG ENERGIFORBRUK FOR AVLØPSTRANSPORT

SCADA-system.

3. UNDERSTAND YOUR DATA (AND YOUR CALCULATIONS)

RAW DATA

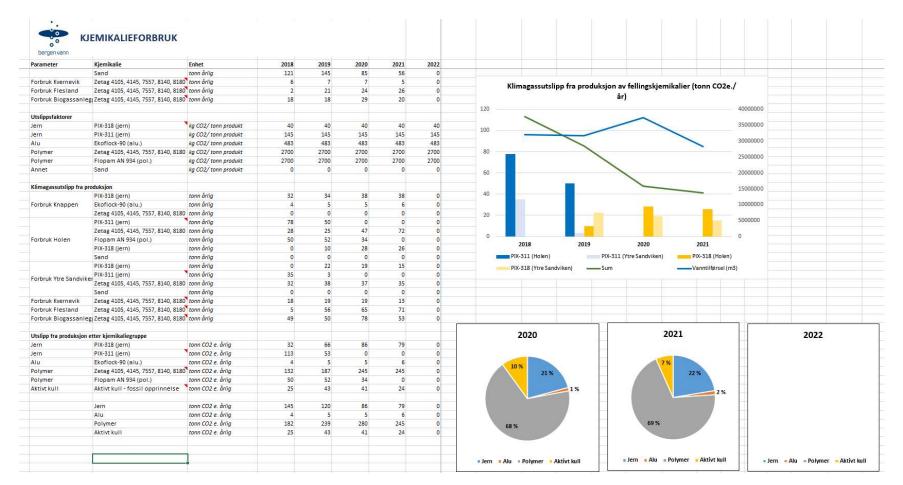
Kilometers

Working hours

EMISSION FACTORS

- Databases
- Standards
- Suppliers
- Authorities

CALCULATIONS


- One way
- Both ways
- Sigle vehicle
- Vehicle fleet

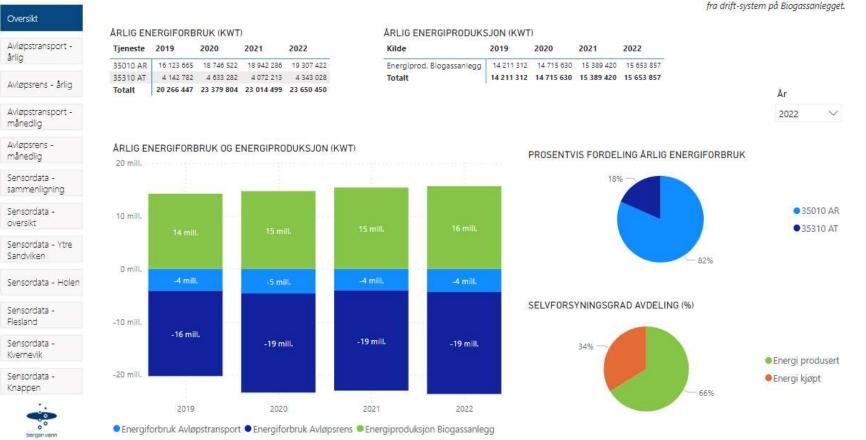
OUTPUT

- Kg CO2e. / km
- Kg CO2e. / MJ
- Kg CO2e. / t*km

4. CHOOSE YOUR TOOLS WISELY

CLIMATE Smart

UTILITIES


the internationa

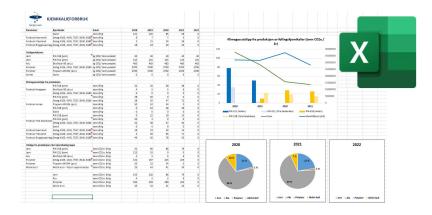
ater association

inspiring change

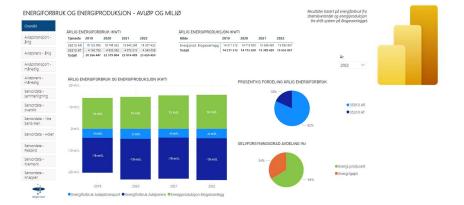
4. CHOOSE YOUR TOOLS WISELY

ENERGIFORBRUK OG ENERGIPRODUKSJON - AVLØP OG MILJØ

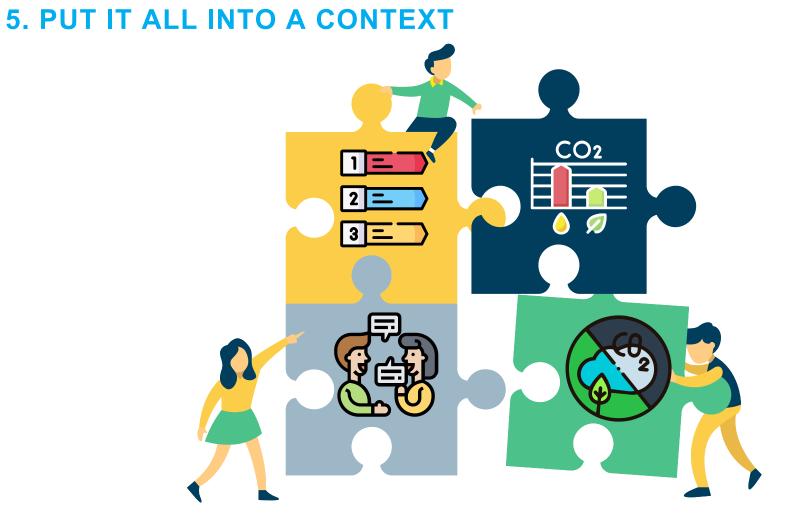
inspiring change


strømleverandør og energiproduksjon fra drift-system på Biogassanlegget.

Resultater basert på energiforbruk fra

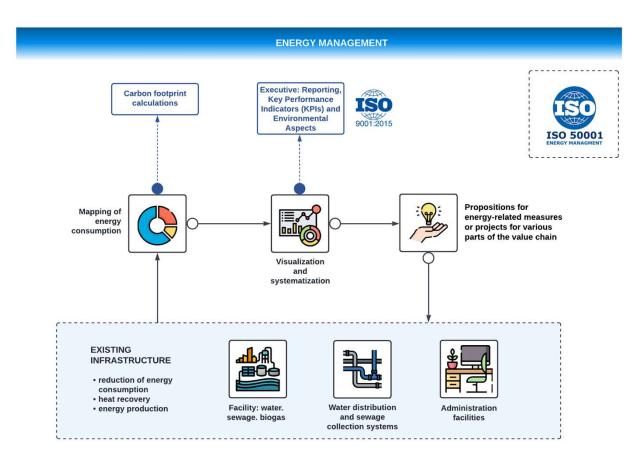

bergen vann

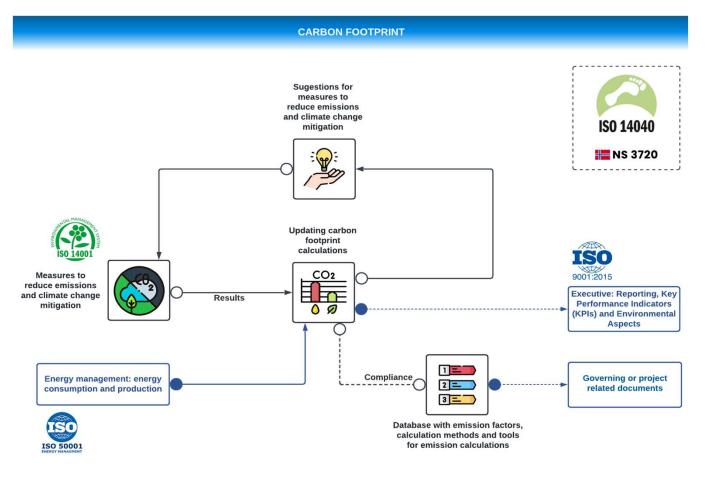
4. CHOOSE YOUR TOOLS WISELY



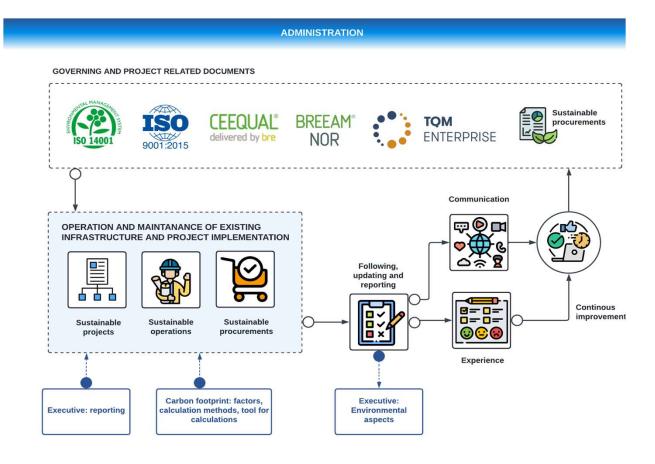
- Easy to calculate.
- "Everyone" can use it.
- Easy to store and exchange.

- Easy to navigate.
- Visually appealing and intuitive.
- Can link it up to the "data clouds" and "live" sensor measurement.
- Needs special competence.
- Not for calculations.
- Additional costs.

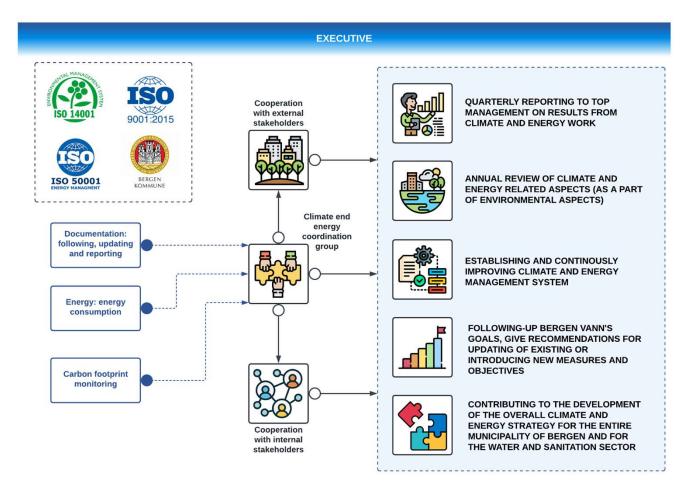


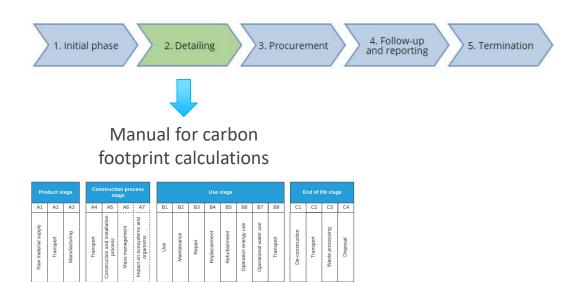


inspiring change



inspiring change




inspiring change

Prosess for managing climate, energy and environmental aspects in projects

inspiring change

LESSONS LEARNED

- Start with operations and move further into other departments or sections like project or administration.
- Data obtained from different sources will be difficult to compare without some generalization and simplification.
- Remember what is the purpose of your calculations. Reporting, calculating reduction of emissions or getting a strategical overview?
- Choose your fight you can't do everything at once.
- Use already existing systems for quality or governance and expand on them.

General Discussion MODERATOR: JACOB KRAGH ANDERSEN

SAVE THE DATES: CSU SERIES

Monitoring and mitigating methane: Danish lessons for global action

26 June

Monitoring and mitigating nitrous oxide: Danish lessons for global action

12 September

Climate Smart Water Futures within Planetary Boundaries

12 October

UPCOMING IWA WEBINARS & EVENTS

Learn more about future online events at http://www.iwa-network.org/iwa-learn/

In partnership with:

The Nature Conservancy

JOIN OUR NETWORK OF WATER PROFESSIONALS!

IWA brings professionals from many disciplines together to accelerate the science, innovation and practice that can make a difference in addressing water challenges.

Use code WEB23RECRUIT

for a 20% discount off

new membership.

Join before 31 December 2023 at: www.iwa-connect.org

