Removal of Organic Matter and Salts from Reverse Osmosis Concentrate by a Sequential Electrochemical Treatment

H. Olvera-Vargas^{1,2}, O. Garcia-Rodriguez¹, O. Lefebvre¹

1) Department of Civil and Environmental Engineering, National University of Singapore, Singapore, 117576, Singapore. 2) Instituto de Energías Renovables, Universidad Nacional Autónoma de México (IER-UNAM), Temixco, Morelos, 62580, México huolv@ier.unam.mx

The context

Over one billion people live in regions with water shortage.

> **Reverse osmosis (RO)** is widely used to supplement reused water.

The flipside of **RO** is that it regenerates a concentrate charged with organic and inorganic pollutants¹.

Electrochemical technologies have

Our proposal

Electro-Fenton Removal of organic matter.

Electrocoagulation

Removal of the remaining salts.

become the new frontier of **efficient** and eco-friendly alternatives for wastewater treatment².

Results

Electro-Fenton

Total removal of the organic matter.

Transformation of the ions initially present into different species.

Electrocoagulation

Efficient removal of remaining ions (61%, 75% and 88% of Cl-, ClO_3^- and ClO_4^- removal, respectively, and 37%, 88% and 87% for NO_3^- , NO_2^- and NH_4^+).

Ions were not removed without electro-Fenton pre-treatment.

Conclusion

This sequential electrochemical process stands as a **promising option for** the integral treatment of RO concentrate (organics removal and desalination), with an estimated operational cost of US\$ 8.1 m⁻³.

0

Reference

30 60 120

1. J. Environ. Manage. 150 (2015) 322-335. 2. Crit. Rev. Environ. Sci. Technol. (2020) doi: 10.1080/10643389.2020.1820428

Time/min

180 240